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# The mirror instability was found by Vedenov and
Sagdeev with the help of kinetic description (1957 but
published in 1958) using the expansion w/w. < 1. The
growth rate:

_ 28 B 1 k2 GL—=0)\ 1
7= kelom g _ﬁj_g<l+ 2 >5L_'

where § = 87rpH/B2 and 3, = Swp, /B?, ion distribution
function f(v,v1) Is assumed bi-Maxwellian and
electrons cold.
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According to measurements in the Earth magnetosheath T
(Lucek et.al., (2001)) holes have the form elongated in the

mean magnetic field direction with maxima of density and
pressure. A typical depth of such magnetic holes is about

20% from the mean magnetic field value, sometimes the

depth can achieve 50 %. The characteristic width of such
structures is about 2-4 ion Larmor radii with aspect ratio

about 7-10. These structures are often associated with
development of the mirror instabllity.
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» The applicability condition of Ml v /k, < vr; means that
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Main equationsfor themirror modesin thedrift approximation
['he drift kinetic equation for ions: T

of of

b - b -VB—
BN +yb-Vf—ub- -V J0,

= 0.
where 1 = v{ /2B is the adiabatic invariant, b = B/B

(electric drift and parallel electric field are not essential).
Both pressures p and p, are given by the integrals:

p| _mB/U2fd,udv|dgpzm/v2fdgv,
9 1 2 ¢ 73
p, =mDB /ufd,udvdgp: §m/vad V.
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Main equationsfor themirror modesin thedrift approximation

[he equation for the balance of forces (transverse T
components):

B? AT B-VB
O—H{_v<p¢—|—8—ﬂ>+[1—|—§(]h_p)] A }

where the first term in the r.h.s. describes action of magnetic
and perpendicular pressures, the second term is responsible
for magnetic lines elasticity, 11, = ;. — b;b,.. Here the inertia
term is omitted. It is small in both linear and nonlinear
regimes.

Two Maxwell equations:

V-B=0, VXE:—la—B
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Behavior of the growth rate near threshold in the bi-Maxwellian case
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Near threshold the instabllity is saturated due to the FLR
effect :

_ UT||6H [ﬁL_ _i_ ]‘C2 ( ﬁL_ﬁ>_i ]
‘kz‘\/%ﬁj_ 1 1—|_ 9 4ﬁj_kj_pz

In this case k| oc /g, k,/ k| oc /e and v ~ &2,
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Quadratic nonlinearities
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Assuming

~

B, 26 5¢—5|>
B, 1+4. (H )Y

the multi-scale expansion yields

- 2
gg K. Kl—Aj%jLAL)U—SU?],

where Here K, = — % and H f(Z) = VP [T fZ)dZ’ IS
the Hilbert transform.
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The 3D mode
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The obtained equation possesses one remarkable property:

oU OF
o7 — K5

where

1 ok 1
F_/[——U2+ UAj@ZZzH (V. U)? +U3] d°R.

F has the meaning of the free energy or the Lyapunov
functional.
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The 3D mode

fThis guantity can not grow but only decrease in time:

— = | == PR=— | —K.—PPR<0.
dT’ —

dF_/(SFaU /6FA OF
U OT SU 75U

dF'/dT vanishes on the stationary localized solutions:

5F o, 07 ,

oU

Such solutions are possible at ¢ < 0 but unstable; above
threshold, = > 0, they are absent.
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The 3D mode
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Thus, the derivative dF'/dT' is strictly negative and
respectively F' decreases monotonically in time, becoming
more negative. For small amplitudes such regime provides by
the first term. At the nonlinear regime negativeness of F

provides by the last term, i.e., [ U?d®R. The latter means that
at the nonlinear stage

/U3d3R <0

that corresponds to the formation of magnetic holes.
This process has blow-up behavior. It is possible to show that
Lthat F'|4—9, 0 is the sufficient condition for collapse. J
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Quasi-linear effects
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# The growth rate with account of FLR effect for arbitrary
distribution function

2
2 3 k||
= \/ Sl (T = 5722 — )
Vi W\ 10 S kiX’
whereI' = or — 6, — 1,
mn [ v | 4 mn [ v Of 4
B, =— [ = fdv, and fr = —— [ —=—5d"v.
PB 2 PB 4 Ov
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Quasi-linear effects
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Here pp = B /87 is the magnetic pressure, € the ion
gyrofrequency,

1
=1+ 58— By with By =" [ s,

PB

4
_Jomn [ UL —L3(v )8_fd3
|
PB aUH
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T 24pBQ2/<vL82+3va>dv
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Quasi-linear effects
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The asymptotic model for arbitrary distribution function reads

2 3, 0- )
Ob=1\/—0(—HO,) | Tb+ =T"A b— x—=b— Ab
s 2 AJ_

where b = 6B, (r,t)/ By,

o mn [0S O*f
5A—25r+—+—vv1th ba = /86( )2

dv,
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Quasilinear eguation
- o

Near the instablility threshold quasi-linear diffusion for ions
mainly takes place along magnetic field (Shapiro &
Shevchenko, 1964):

with
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Quasi-linear (2+1) diffusion
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Figure 1. Resuts ofthe QL simulaton:(op) fuctating maguetic encrgy 1 =) Il
maximum growth rate max(7) as functions of time.
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Quasi-linear (2+1) diffusion
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Figure 2. Results of the QL simulation at ¢ = 1.4 - 10° /€2 (top) Gray scale plot of v1 d f as a function of v and v . Black corresponds
to negative values and white to positive ones; (bottom) Profile of 6 f/ f () as a function of v atvL = 2va4.
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Particle-in-cell and 'Vlasov' (2+1) smulations

v A(f) v A(f) T

Figure 4. Same conditions as Figure 1. Simulation results at times (left) £ = 2000/€2, and (right) ¢ =
10,000/€2,: (top) Gray scale plots of the proton distribution variation v, A(f) (black corresponds to
negative values and white to positive ones). Dotted lines correspond to the contours of the initial
condition v, f?. (bottom) Profiles (solid line) of the proton distribution function (f) integrated over v,
together with the initial profile (dotted line).
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Blowing-up formation of 1D humps
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Figure 3. Results of the simulation of equation (16): solid lines show the time evolution of(from left to right. from top to bottom)
Wg=3%, |bx|*. T, maximum of ~;, maximum of the magnetic fluctuations b(z), A and vy . For comparison, dashed lines show the
evolution in the QL model. The dotted line in the left-bottom panel refers to the evolution of the maximum of —b(x). as predicted by
equation (16).
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Conclusion

f.o Quasi-linear evolution of the mirror instability was T
Investigated by direct integration of the corresponding
diffusion equation. The resulting flattening of the
distribution function is in good agreement with the early
time results of Vlasov-Maxwell simulations.

#® A dynamical model was presented that reproduces the
formation of mirror structures observed at later times. It
provides a possible mechanism for the formation of
magnetic humps in a mirror unstable plasma, as revealed
by satellite measurements.
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