Kinematic dynamo in a random flow with strong average shear
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We analyze kinematic dynamo effect in a conducting fluid where stationary shear flow is
accompanied by relatively weak random smooth velocity fluctuations. Then ....

I. INTRODUCTION

Dynamo implies magnetic field generation in a conducting fluid where a random flow is present.
We consider the case where the magnetic field is growing from weak fluctuations and examine an
initial stage of the magnetic field evolution when its amplitude is small, so that one can neglect
feedback from the magnetic field to the flow. This stage is called kinematic one, and the magnetic
field is passive at the stage. We assume that the random flow is statistically homogeneous in space
and time, and analyze an evolution of magnetic fluctuations in this case.

We consider an evolution of a random in space magnetic field with characteristic scale much less
than the velocity correlation length. Then the magnetic field is increasing at the kinematic stage,
the increase can be characterized by single-point moments of the magnetic field induction B that
grow exponentially in time:

(B*"(t)) o< exp (ut) - (1)

Here angular brackets mean averaging over space and 7, are increments, that are subjects of our
investigation.

The increments 7, are determined by the random flow, they are related to the Lyapunov exponent
A that is average logarithmic diverging rate of close fluid particles. The quantity A~! plays the role
of the Lagrangian correlation time of the random flow. Therefore we are interested in times ¢t > A7}
when the laws (1) are well observed.

The flow is assumed to be composed of a steady shear flow and a random component. Examples!

d = 3 versus d = 2 and other dimensions.

Elastic turbulence

Magneto-diffusion

Vo =0

II. BASIC RELATIONS

The magnetic field evolution in a conducting medium is governed by the equation
OB =(B-V)v—(v-V)B+kV’B. (2)

Here v is the flow velocity and s is the magneto-diffusion coefficient, inversely proportional to the
electrical conductivity of the medium. We consider the case where the magnetic field is weak and,
therefore, k is a constant independent of the magnetic field. The flow is assumed to be incompressible,
Vv = 0.

We investigate the magnetic field in a random (turbulent) flow assuming that the velocity statistics
is homogeneous in space and time. The magnetic fluctuations are examined on scales much less than
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the velocity correlation length. Then the velocity field can be treated as smooth that is the velocity
can be represented as a Taylor series. First terms of the expansion in a vicinity of a fluid particle are

v; = Vj(t) + Zj(t)r, (3)

where V (t) is the fluid particle velocity and 7 is the radius-vector in the reference system with the
origin in the fluid particle. Here Xj; is the velocity gradient matrix, due to the incompressibility
condition its trace is equal to zero.

The flow is assumed to be composed of a steady shear flow and a random component. Then the
matrix of the velocity gradients X;; is written as

Xi(t) = 5651040 + 0j(t), (4)

where the axis one is directed along the shear velocity that varies along the axis two, and s is the shear
coefficient. The random component o;; is zero in average and should be, consequently, characterized
in terms of its pair correlation function, (o;;(t1)omn(t2)) that is a function of ¢t = t; — t5 due to the
statistics homogeneity in time. We assume that the steady shear constituent of the flow is stronger
than the random one, that is

5> / dt (71;(t)0n (0)), (5)

for all components of the matrix &.
Let us pass to the reference system attached to our marked fluid particle and make Fourier
transform for the magnetic field. Then the equation (2) leads to

J

The equation can be explicitly solved in terms of the evolution matrix W, that is the following
chronologically ordered exponent

W(t) = Texp [ /O v 2@')} | (7)
The solution is written as
B(t,k) = W(t)B (WTk:) x (8)
X exp [—ﬁ /0 t dt' k - W(t){W(t’)}1{WT(t’)}1WT(t)k] :

where B (k) is Fourier-transform of the initial magnetic induction, existing at ¢ = 0, and the subscript
T labels transposed matrices.

III. PROPERTIES OF THE EVOLUTION MATRIX

Before passing to the moments of the magnetic field induction we overlook properties of the
evolution matrix (7). First of all, determinant of W is equal to unity since the matrix > is traceless
(due to incompressibility). Next, eigen values of W are obviously positive.
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We are interested in properties of the evolution matrix W on times ¢ larger than the inverse
Lyapunov exponent, where W possesses some universal properties. They can be conveniently
expressed in terms of the Gaussian decomposition

W(t) = TL ATy, (9)

where T}, and T}y are triangle matrices and A is diagonal matrix:

I x xa . 100
=01 | . Th=|¢G 10], (10)
001 G G 1
e’ 0 0
A= 0 e 0 |. (11)
O O epl—P

The structure of the diagonal matrix A is determined by the condition detA = 1, following from
detW = 1. X o

Substituting the decomposition (9) into the equation 9,)W = YW following from Eq. (7), one
obtains

ToST, — T0,0, + OAA + ATyl AL (12)

Based on the relation one concludes that at ¢ > A~! the elements of the matrix A behave
exponentially in time, the T is frozen (being remained of order unity), whereas elements of the
matrix 7 7, fluctuate, possessing a homogeneous in time statistics. The statistics of the parameters p
and p; is determined by the central limit theorem since they are integrals of the random functions
with homogeneous in time statistics.

The time derivative J;p can be estimated as A\. If A < s then a hierarchy y > y1 > x2 is correct
as one can check from Eq. (12). Therefore in the main approximation in /s the only component
091 = o is relevant and the system of equations (12) is reduced to

X=s—x%0, p=x0, pi=—p (13)

The short correlated case is examined in Appendix A.

IV. RANDOM INITIAL CONDITIONS

We consider the case where the initial magnetic field is distributed randomly in space with
homogenous in space statistics and have a single correlation length [. Then the induction pair
correlation function can be written as

where f is a function decaying fast as its argument tends to infinity. In our assumptions, a
characteristic wave number of B should be much larger than the inverse velocity correlation length.
Therefore [ should be much smaller than the velocity correlation length.

[Tpu Gosnpmux t xapakrepHbie p > 1. B arom mpenesne u3 BbipazkeHus (8) JIEMKO MOJIyYaeTCsI
OTIeHKA!

l
B*(t) ~ —Bge’, (15)

rq
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re rg— auddysnonnas jmHa. Byaem Beraucaarts Momentsl (B(t)) mis n > 1. B stom ciydae
BeJLyIIHil BKJIAJI B UHKPEMEHT 7, see Eq. (1), onpeiesisieTcst nepeBaibHOl TpaekTopueit o(t) = const,
Tak 9To n3 ypasHenuii (13) cieyer:

p =1ty/so.

st onpeiesiennst 7, Hy»KHO 3HATH BEpOSTHOCTD p(0) Takoil peanusanuu o(t) = const. [1ns Bpemen t,
MHOTO OOJIBIIIX BPEMEHH KOPPEJISAINE CJIyJIaiiHoi mepeMeHHoi o (1), mpuMeHnMo 06001IeHne 3aKOHa
GosbIux wucest (ciemyrorree, (GaKTUIECKU, U3 aJJIUTUBHOCTH SHTPOIINHN ):

p(o) ~ exp (—tI'(0)), (16)

rie I'(0) — Tak nHasbiBaemast yHukiws Kpamepa. YcpeiHeHne 110 ¢ BBITOTHIETCs TaKZKe epeBabHBIM
00pas3oM, 1 pe3yJabTaT MOKeT OBITh IIPEeJICTABIEH KaK

Yo = ny/$0, — T(0y,), (17)
rje 0, ABISETCs PelleHUeM IePeBAJILHOIO yPABHEHHUS:

T(0,) = = /= (18)

2\ o,

Ecim Bpemst Koppesisinuu cirydaifHoro tporiecca o(t) J0CTaToqHO Masio (3aMeTHO MEHbIIe, deM
A1), To dynknusa Kpamepa sipjistercst mpocTo napaboioii:

I'(0) = 0®/D, (19)

U Mbl IIPpUXOAUM K ABHOMY BBbIPDAaXKEHHIO JJIA aCUMIITOTUYECKUX IIpU T > 1 sHaveHnit MCKOMBIX
NHKPEMEHTOB!

Yo =CAn*3, O =3 x 4% (20)

V. CONCLUSION

So, ...

IIpunnoxkenne A

Here we consider the random constituent of the flow that is short correlated in time. As we noted,
at the condition A < s the only relevant component of the matrix of the random velocity gradients
1S 0 = 09;. In the short correlated case it can be treated as white noise that is

(o(t1)o(ta)) = Dé(t1 — ta), (A1)

where the factor D characterizes strength of the noise. The condition A < s is equivalent to D < s.
Introducing the variable z = !, one obtains from Eqs. (13,A1) the following Fokker-Plank equation
for the probability distribution function P(x):

0P = 0,(sx*P) + (D/2)9?P. (A2)

A stationary solution of the equation is

2
P o exp (— 2;;; ) , (A3)




that leads to

@) =0 = oo (

- T(1/3)
And then we obtain from Eq. (13)

A= (x0) = {sz) = 223)
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