# Multidimensional integrable hierarchies connected with vector fields

L.V. Bogdanov in collaboration with S.V. Manakov

L.D. Landau ITP RAS, Moscow

#### Outline

- 1. Introduction
- 2. Dressing scheme based on nonlinear vector Riemann problem
- 3. General (N+2)-dimensional one-point hierarchy
  - Dunajski system hierarchy
  - Manakov-Santini hierarchy
- 4. Two-point case. Dispersionless 2DTL generalizations

#### Introduction

- ▶ Linear operators (Lax pairs) vector fields, meromorphyc in spectral variable and including derivative  $\partial_{\lambda}$  over spectral variable (N 'space' variables + spectral variable)
- ► Connected to nonlinear vector Riemann-Hilbert problem of the type

$$\Psi_+ = \mathsf{F}(\Psi_-),$$

where  $\Psi_+$ ,  $\Psi_-$  are boundary values of (N+1)-component vector function on the sides of some curve (e.g. unit circle)

- ▶ One singular point case dispersionless KP hierarchy, second heavenly equation hierarchy, Dunajski system hierarchy. Special vector fields (area-preserving or volume preserving). A simplest general position case (N=1) is connected with Manakov-Santini system.
- ► Two singular points case for N=1 and Hamiltonian vector fields correspond to dispersionless 2DTL hierarchy. We consider this case for general vector fields.

- V. E. Zakharov and A. B. Shabat, Functional Anal. Appl. 13, 166-174 (1979).
  - L. V. Bogdanov, V. S. Dryuma and S. V. Manakov, On the dressing method for Dunajski anti-self-duality equation, nlin/0612046 (2006).
  - L. V. Bogdanov, V. S. Dryuma and S. V. Manakov, Dunajski generalization of the second heavenly equation: dressing method and the hierarchy, J Phys. A: Math. Theor. **40** (2007) 14383–14393.
- B. Konopelchenko, L. Martinez Alonso and O. Ragnisco, The dbarapproach for the dispersionless KP hierarchy, J.Phys. A: Math. Gen. 34 10209-10217 (2001).
- L. V. Bogdanov and B. G. Konopelchenko, On the dbar-dressing method applicable to heavenly equation; Phys. Lett. A 345 (2005) 137-143.
- S. V. Manakov and P. M. Santini, The Cauchy problem on the plane for the dispersionless Kadomtsev-Petviashvili equation, JETP Lett. **83** (2006) 462-6.

- S. V. Manakov and P. M. Santini, A hierarchy of integrable PDEs in 2+1 dimensions associated with 2-dimensional vector fields, Theor. Math. Phys. **152** (2007) 1004–1011.
- S. V. Manakov and P. M. Santini, On the solutions of the dKP equation: the nonlinear, Riemann-Hilbert problem, longtime behaviour, implicit solutions and wave breaking, J Phys. A: Math. Theor. **41** (2008) 055204.
- S.V.Manakov, P.M.Santini, The dispersionless 2D Toda equation: dressing, Cauchy problem, longtime behavior, implicit solutions and wave breaking, J Phys A
- M.Dunajski, *Proc.Roy.Soc.Lond.A* **458**, 1205 (2002)
- M.V. Pavlov, Integrable hydrodynamic chains, J. Math. Phys. **44**(9) (2003) 4134–4156

- M. Dunajski, A class of Einstein-Weyl spaces associated to an integrable system of hydrodynamic type, J. Geom. Phys. **51** (2004) 126–137.
- L. Martínez Alonso and A. B. Shabat, Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type, Phys. Lett. A 300 (2002) 58–64.
- L. Martínez Alonso and A. B. Shabat, Hydrodynamic reductions and solutions of a universal hierarchy, Theor. Math. Phys. **140** (2004) 1073–1085
- K. Takasaki, Phys. Lett. B 285, 187-190 (1992)
- K. Takasaki, J. Math. Phys. 30(7), 1515-1521 (1989)
- K. Takasaki, J. Math. Phys. 31(8), 1877-1888 (1989)
- + Extensive literature on dispersionless integrable hierarchies

#### Dressing scheme

vector Riemann problem of the form

$$\mathbf{\Psi}^+ = \mathbf{F}(\mathbf{\Psi}^-),$$

where  $\Psi^+$ ,  $\Psi^-$  denote boundary values of the (N+1)-component vector function (column) on the sides of some oriented curve  $\gamma$  in the complex plane of the variable  $\lambda$ .

Linearized problem

$$\delta \mathbf{\Psi}^+ = \frac{D(\mathbf{F})}{D(\mathbf{\Psi})} \delta(\mathbf{\Psi}^-), \quad \frac{D(\mathbf{F})}{D(\mathbf{\Psi})_{ij}} = \left(\frac{\partial F_i}{\partial \Psi_j}\right)$$

Let  $\Psi$  depend on a set of extra variables  $t_n$  (times). Then  $\frac{\partial}{\partial t_n}\Psi$ , and also  $\lambda^k \frac{\partial}{\partial t_n}\Psi$ ,  $\lambda^k \frac{\partial}{\partial \lambda}\Psi$ , satisfy linearized problem, and, suggesting uniqueness of its solution (or absence of nonzero analytic solutions), it is possible to develop a scheme of constructing linear equations, which give nonlinear integrable PDEs as compatibility conditions.

### Generating relation

Let us consider a differential form

$$\omega = \mathrm{d}\Psi^0 \wedge \mathrm{d}\Psi^1 \wedge \cdots \wedge \mathrm{d}\Psi^N,$$

where the differential includes both times and a spectral variable,  $\mathrm{d}f = \sum_{n=1}^{\infty} \partial_n f \mathrm{d}t_n + \partial_{\lambda} f \mathrm{d}\lambda$ . The condition on the curve  $\gamma$  is

$$\omega^+ = \left| \frac{D(\mathbf{F})}{D(\mathbf{\Psi})} \right| \omega^-$$

Let us fix a set of N+1 variables  $\lambda, t_1, \dots, t_n$  and introduce a Jacobi matrix

$$J_{ij} = \partial_i \Psi^j, \quad 0 \leqslant i, j \leqslant N, \quad \partial_0 = \frac{\partial}{\partial \lambda}, \ \partial_k = \frac{\partial}{\partial t_k}, \quad 1 \leqslant k \leqslant N.$$

Then for normalized form  $\Omega = (\det J)^{-1}\omega$ 

$$\Omega^+ = \Omega^-$$

Generating relation, plays the role similar to Hirota bilinear identity.



# General (N+2)-dimensional one-point hierarchy

N+1 formal series depending on N infinite sets of 'times'

$$\Psi^{0} = \lambda + \sum_{n=1}^{\infty} \Psi_{n}^{0}(\mathbf{t}^{1}, \dots, \mathbf{t}^{N}) \lambda^{-n},$$

$$\Psi^{k} = \sum_{n=0}^{\infty} t_{n}^{k} (\Psi^{0})^{n} + \sum_{n=1}^{\infty} \Psi_{n}^{k} (\mathbf{t}^{1}, \dots, \mathbf{t}^{N}) (\Psi^{0})^{-n}.$$

where  $1 \leqslant k \leqslant N$ ,  $\mathbf{t}^k = (t_0^k, \dots, t_n^k, \dots)$ . We denote  $\partial_n^k = \frac{\partial}{\partial t_n^k}$ ,  $\Psi$  – vector (column) with components  $\Psi^0, \dots, \Psi^N$ , projectors  $(\sum_{-\infty}^{\infty} u_n \lambda^n)_+$  =  $\sum_{n=0}^{\infty} u_n \lambda^n$ ,  $(\sum_{-\infty}^{\infty} u_n \lambda^n)_- = \sum_{-\infty}^{n=-1} u_n \lambda^n$ .

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

#### Generating relation

The hierarchy is defined by the generating relation

$$(J_0^{-1} \mathrm{d} \Psi^0 \wedge \mathrm{d} \Psi^1 \wedge \dots \wedge \mathrm{d} \Psi^N)_- = 0, \tag{1}$$

where the differential includes times and spectral variable,

$$df = \sum_{k=1}^{N} \sum_{n=0}^{\infty} \partial_n^k f dt_n^k + \partial_{\lambda} f d\lambda,$$

and  $J_0$  – determinant of Jacobi matrix J,

$$J_{ij} = \partial_i \Psi^j, \quad 0 \leqslant i, j \leqslant N, \quad \partial_0 = \frac{\partial}{\partial \lambda}, \ \partial_k = \frac{\partial}{\partial x^k}, \quad 1 \leqslant k \leqslant N,$$

where  $x^k = t_0^k$ . Relation (1) generates Lax-Sato equations.

#### Proposition

Relation (1) is equivalent to the infinite set of Lax-Sato equations

$$\partial_n^k \mathbf{\Psi} = \sum_{i=0}^N (J_{ki}^{-1} (\mathbf{\Psi}^0)^n)_+ \partial_i \mathbf{\Psi}, \quad 0 \leqslant n \leqslant \infty, 1 \leqslant k \leqslant N.$$
 (2)

 $(1) \Rightarrow \text{hierarchy } (2) \text{ follows from }$ 

#### Lemma

Given generating relation (1) $\Rightarrow$  for arbitrary first order operator  $\hat{U}$ ,

$$\hat{U} = \sum_{k=1}^{N} \sum_{i} u_{i}^{k}(\lambda, \mathbf{t}) \partial_{i}^{k} + u^{0}(\lambda, \mathbf{t}^{1}, \mathbf{t}^{2}) \partial_{\lambda}$$

with 'plus' coefficients  $((u_i^k)_- = u_-^0 = 0)$ , the condition  $(\hat{U}\Psi)_+ = 0$ (where for  $\Psi^k$ ,  $k \neq 0$  derivatives are taken for fixed  $\Psi^0$ ) implies that  $\hat{U}\Psi=0$ 

### Simplest equations

The basis  $\lambda^n \partial_k \Psi$ ,  $\lambda^n \partial_\lambda \Psi$ ,  $0 \le n < \infty$ ,  $0 < k \le N$ . We expand  $\partial_1^k \Psi$  into the basis

$$\partial_1^k \Psi = (\lambda \partial_k - \sum_{p=1}^N (\partial_k u_p) \partial_p - (\partial_k u_0) \partial_\lambda) \Psi, \quad 0 < k \leq N,$$

Compatibility condition for the pair of flows with  $\partial_1^k$  and  $\partial_1^q$ ,  $k \neq q$ 

$$\begin{split} \partial_1^k \partial_q \hat{u} - \partial_1^q \partial_k \hat{u} + [\partial_k \hat{u}, \partial_q \hat{u}] &= (\partial_k u_0) \partial_q - (\partial_q u_0) \partial_k, \\ \partial_1^k \partial_q u_0 - \partial_1^q \partial_k u_0 + (\partial_k \hat{u}) \partial_q u_0 - (\partial_q \hat{u}) \partial_k u_0 &= 0, \end{split}$$

where  $\hat{u}$  is a vector field,  $\hat{u} = \sum_{p=1}^{N} u_k \partial_k$ . The case N=2 + volume preservation reduction gives Dunajski system.

For  $u_0 = 0$  we have only the first equation without the rhs. This case corresponds to general vector fields without the derivative on spectral variable, and, after Hamiltonian reduction, represents hyper-Kahler hierarchies (Takasaki).

#### Dunajski equation

A canonical Plebański form of null-Kähler metrics (signature (2,2))

$$g = dwdx + dzdy - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz.$$
 (3)

The conformal anti-self-duality (ASD) condition leads to Dunajski equation

$$\Theta_{wx} + \Theta_{zy} + \Theta_{xx}\Theta_{yy} - \Theta_{xy}^2 = f, \tag{4}$$

$$\Box f = f_{xw} + f_{yz} + \Theta_{yy} f_{xx} + \Theta_{xx} f_{yy} - 2\Theta_{xy} f_{xy} = 0.$$
 (5)

Linear system  $L_0\Psi=L_1\Psi=0$ , where  $\Psi=\Psi(w,z,x,y,\lambda)$  and

$$L_0 = (\partial_w - \Theta_{xy}\partial_y + \Theta_{yy}\partial_x) - \lambda\partial_y + f_y\partial_\lambda,$$
  

$$L_1 = (\partial_z + \Theta_{xx}\partial_y - \Theta_{xy}\partial_x) + \lambda\partial_x - f_x\partial_\lambda.$$

The case f = 0 corresponds to metrics of the form (3) satisfying Einstein equations, and Dunajski equation (4), (5) reduces to Plebański second heavenly equation.

### Dunajski equation hierarchy

General one-point hierarchy for N=2 + reduction  $J_0 = 1$ 

$$\Psi^{0} = \lambda + \sum_{n=1}^{\infty} \Psi_{n}^{0}(\mathbf{t}^{1}, \mathbf{t}^{2}) \lambda^{-n},$$

$$\Psi^{1} = \sum_{n=0}^{\infty} t_{n}^{1} (\Psi^{0})^{n} + \sum_{n=1}^{\infty} \Psi_{n}^{1}(\mathbf{t}^{1}, \mathbf{t}^{2}) (\Psi^{0})^{-n}$$

$$\Psi^{2} = \sum_{n=0}^{\infty} t_{n}^{2} (\Psi^{0})^{n} + \sum_{n=1}^{\infty} \Psi_{n}^{2}(\mathbf{t}^{1}, \mathbf{t}^{2}) (\Psi^{0})^{-n}.$$

Generating relation

$$(\mathrm{d}\Psi^0 \wedge \mathrm{d}\Psi^1 \wedge \mathrm{d}\Psi^2)_- = 0$$

Lax-Sato equations of Dunajski hierarchy

$$\begin{split} \partial_n^1 \Psi &= + \left( (\Psi^0)^n \begin{vmatrix} \Psi_\lambda^0 & \Psi_\lambda^2 \\ \Psi_y^0 & \Psi_y^2 \end{vmatrix} \right)_+ \partial_x \Psi - \left( (\Psi^0)^n \begin{vmatrix} \Psi_\lambda^0 & \Psi_\lambda^2 \\ \Psi_x^0 & \Psi_x^2 \end{vmatrix} \right)_+ \partial_y \Psi - \\ & \left( (\Psi^0)^n \begin{vmatrix} \Psi_\lambda^0 & \Psi_x^2 \\ \Psi_y^0 & \Psi_y^2 \end{vmatrix} \right)_+ \partial_\lambda \Psi, \end{split}$$

$$\partial_n^2 \Psi = -\left( (\Psi^0)^n \begin{vmatrix} \Psi^0_\lambda & \Psi^1_\lambda \\ \Psi^0_y & \Psi^1_y \end{vmatrix} \right)_+ \partial_x \Psi + \left( (\Psi^0)^n \begin{vmatrix} \Psi^0_\lambda & \Psi^1_\lambda \\ \Psi^0_x & \Psi^1_x \end{vmatrix} \right)_+ \partial_y \Psi + \left( (\Psi^0)^n \begin{vmatrix} \Psi^0_\lambda & \Psi^1_\lambda \\ \Psi^0_y & \Psi^1_y \end{vmatrix} \right)_+ \partial_\lambda \Psi$$

(plus a condition  $J_0=1$ ). For  $\Psi^0=\lambda$  Dunajski equation hierarchy reduces to second heavenly equation hierarchy (Takasaki), while for  $\Psi^2=y$  it reduces to dispersionless KP hierarchy

First two flows

$$\partial_1^1 \Psi = (u_y \partial_x - u_x \partial_y + \lambda \partial_x - f_x \partial_\lambda) \Psi, \partial_1^2 \Psi = (v_x \partial_y - v_y \partial_x + \lambda \partial_y - f_y \partial_\lambda) \Psi,$$

where

$$u = \Psi_1^2, \quad v = \Psi_1^1, \quad f = \Psi_1^0.$$

det  $J_0=1\Rightarrow u_y+v_x=0$ , then we introduce a potential  $\Theta$ ,  $v=\Theta_y$ ,  $u=-\Theta_x$ . After the identification  $z=-t_1^1$ ,  $w=t_1^2$  we get Lax pair for Dunajski equation

$$\Theta_{wx} + \Theta_{zy} + \Theta_{xx}\Theta_{yy} - \Theta_{xy}^2 = f,$$
  
$$f_{xw} + f_{yz} + \Theta_{yy}f_{xx} + \Theta_{xx}f_{yy} - 2\Theta_{xy}f_{xy} = 0.$$

### Manakov-Santini system

$$u_{xt} = u_{yy} + (uu_x)_x + v_x u_{xy} - u_{xx} v_y, v_{xt} = v_{yy} + uv_{xx} + v_x v_{xy} - v_{xx} v_y,$$
 (6)

Lax pair

$$\partial_y \Psi = ((\lambda - v_x)\partial_x - u_x\partial_\lambda)\Psi,$$
  

$$\partial_t \Psi = ((\lambda^2 - v_x\lambda + u - v_y)\partial_x - (u_x\lambda + u_y)\partial_\lambda)\Psi.$$

For v = 0 reduces to dKP (Khohlov-Zabolotskaya equation)

$$u_{xt} = u_{yy} + (uu_x)_x, (7)$$

reduction u = 0 gives the equation (Pavlov)

$$v_{xt} = v_{yy} + v_x v_{xy} - v_{xx} v_y.$$
 (8)

#### Manakov-Santini system hierarchy

General hierarchy with N=1

$$L = \Psi^0 = \lambda + \sum_{n=1}^{\infty} \Psi_n^0(\mathbf{t}) \lambda^{-n}, \tag{9}$$

$$M = \Psi^{1} = \sum_{n=0}^{\infty} t_{n} (\Psi^{0})^{n} + \sum_{n=1}^{\infty} \Psi_{n}^{1}(\mathbf{t}) (\Psi^{0})^{-n}.$$
 (10)

Generating relation

$$(J_0^{-1} d\Psi^0 \wedge d\Psi^1)_- = 0, \tag{11}$$

where

$$J = \begin{pmatrix} \Psi_{\lambda}^0 & \Psi_{\lambda}^1 \\ \Psi_{\lambda}^0 & \Psi_{\lambda}^1 \end{pmatrix}, \quad J_0 = \det J = 1 + \partial_x \Psi_1^1 \lambda^{-1} + (\partial_x \Psi_2^1 - \Psi_1^0) \lambda^{-2} + \dots$$

Lax-Sato equations

$$\partial_n \mathbf{\Psi} = (J_0^{-1} \Psi_{\lambda}^0 (\Psi^0)^n)_+ \partial_{\lambda} \mathbf{\Psi} - (J_0^{-1} \Psi_{\lambda}^0 (\Psi^0)^n)_+ \partial_{\lambda} \mathbf{\Psi}.$$

Lax-Sato equations for the first two flows

$$\partial_y \Psi = ((\lambda - v_x)\partial_x - u_x\partial_\lambda)\Psi, \partial_t \Psi = ((\lambda^2 - v_x\lambda + u - v_y)\partial_x - (u_x\lambda + u_y)\partial_\lambda)\Psi,$$

where  $u = \Psi_1^0$ ,  $v = \Psi_1^1$ ,  $x = t_0$ ,  $y = t_1$ ,  $t = t_2$ . Compatibility condition gives Manakov-Santini system (6).

To reduce Manakov-Santini hierarchy to dKP hierarchy, one should consider the condition  $J_0=1$  (corresponds to Hamiltonian or area-preserving vector fields), then Lax-Sato equations of Manakov-Santini hierarchy directly reduce to Lax-Sato equations of dKP hierarchy. Respectively, the reduction  $\Psi^0=\lambda$  leads to the hierarchy connected with equation (8) (Pavlov), considered also by Martínez Alonso and Shabat.

#### Non-Hamiltonian 2DTL generalization

A simplest generalization of dispersionless 2DTL equation reads

$$(e^{-\phi})_{tt} = m_t \phi_{xy} - m_x \phi_{ty},$$
  
 $m_{tt} e^{-\phi} = m_{ty} m_x - m_{xy} m_t,$  (12)

with a Lax pair

$$\partial_{x} \mathbf{\Psi} = \left( (\lambda + \frac{m_{x}}{m_{t}}) \partial_{t} - \lambda (\phi_{t} \frac{m_{x}}{m_{t}} - \phi_{x}) \partial_{\lambda} \right) \mathbf{\Psi},$$

$$\partial_{y} \mathbf{\Psi} = \left( \frac{1}{\lambda} \frac{e^{-\phi}}{m_{t}} \partial_{t} + \frac{(e^{-\phi})_{t}}{m_{t}} \partial_{\lambda} \right) \mathbf{\Psi}$$

For m = t system (20) reduces to dispersionless 2DTL equation

$$(e^{-\phi})_{tt} = \phi_{xy},$$

Respectively,  $\phi=0$  reduction gives an equation (Martínez Alonso and Shabat, Pavlov)

$$m_{tt} = m_{ty}m_{x} - m_{xy}m_{t}.$$



## Generalized dispersionless 2DTL hierarchy

We generalize the scheme of dispersionless 2DTL hierarchy (Takasaki-Takebe).

Formal series ('+' may be associated with infinity, and '-' with zero, usually we suggest they define the functions outside and inside the unit circle),

$$\begin{split} & \Lambda^{+} = \ln \lambda + \sum_{k=1}^{\infty} I_{k}^{+} \lambda^{-k}, \quad \Lambda^{-} = \ln \lambda + \phi + \sum_{k=1}^{\infty} I_{k}^{-} \lambda^{k}, \\ & M^{+} = M_{0}^{+} + \sum_{k=1}^{\infty} m_{k}^{+} \mathrm{e}^{-k\Lambda^{+}}, \quad M^{-} = M_{0}^{-} + m_{0} + \sum_{k=1}^{\infty} m_{k}^{-} \mathrm{e}^{k\Lambda^{-}}, \\ & M_{0} = t + x \mathrm{e}^{\Lambda} + y \mathrm{e}^{-\Lambda} + \sum_{k=1}^{\infty} x_{k} \mathrm{e}^{(k+1)\Lambda} + \sum_{k=1}^{\infty} y_{k} \mathrm{e}^{-(k+1)\Lambda} \end{split}$$

Usually for simplicity we suggest that only finite number of  $x_k$ ,  $y_k$  is not equal to zero.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Generating relation of the hierarchy

$$((J_0)^{-1}\mathrm{d}\Lambda\wedge\mathrm{d}M)^+=((J_0)^{-1}\mathrm{d}\Lambda\wedge\mathrm{d}M)^-,\tag{13}$$

where  $J_0$  is a determinant of Jacobi type matrix J,

$$J = \begin{pmatrix} \lambda \partial_{\lambda} \Lambda & \partial_{t} \Lambda \\ \lambda \partial_{\lambda} M & \partial_{t} M \end{pmatrix},$$

the differential d takes into account all variables t, x,  $x_k$ ,  $y_k$  and a spectral variable  $\lambda$ , and  $(\dots)^+$ ,  $(\dots)^-$  here are not projectors, but mean that all series have superscript '+' or '-' (or the functions are taken inside and outside the unit circle). As a result, the expression in generating relation is meromorphic.

#### Lax-Sato equations

$$\partial_n^+ \Psi = \left( (J_0^{-1} (\lambda \partial_\lambda \Lambda^+) e^{(n+1)\Lambda^+})_+ \partial_t - (J_0^{-1} (\partial_x \Lambda^+) e^{(n+1)\Lambda^+})_+ \partial_\lambda \right) \Psi,$$
  
$$\partial_n^- \Psi = \left( (J_0^{-1} (\lambda \partial_\lambda \Lambda^-) e^{-(n+1)\Lambda^-})_- \partial_t - (J_0^{-1} (\partial_x \Lambda^+) e^{-(n+1)\Lambda^+})_- \partial_\lambda \right) \Psi$$

where

$$\Psi = \begin{pmatrix} \Lambda \\ M \end{pmatrix}, \qquad \partial_n^+ = \frac{\partial}{\partial x_n}, \quad \partial_n^- = \frac{\partial}{\partial y_n},$$
$$(\sum_{k=-\infty}^{\infty} c_k \lambda^k)_- = \sum_{k=-\infty}^{-1} c_k \lambda^k, \qquad (\sum_{k=-\infty}^{\infty} c_k \lambda^k)_+ = \sum_{k=0}^{\infty} c_k \lambda^k.$$

The flows with  $\partial_0^+$  and  $\partial_0^-$  give a Lax pair for generalized d2DTL ,  $m = m_0 + t$ .

Condition  $J_0 = 1$  reduces the hierarchy to d2DTL, condition  $\Lambda = \ln \lambda$  to the hierarchy considered by Martínez Alonso and Shabat, also Pavlov

# Transformations. Symmetric generalization of elliptic d2DTL

We search for non-Hamiltonian generalization of ellyptic d2DTL

$$(e^{-\phi})_{tt} = \phi_{z\bar{z}},$$

preserving the symmetry. Gauge transformation (present in d2DTL case, Takasaki), changes Lax pair, preserves equations

$$\lambda \to \lambda \exp(-\epsilon \phi)$$
,

where  $\epsilon$  is a parameter. After this transformation we get  $\Lambda$  of the form

$$\begin{split} & \Lambda^+ = \ln \lambda - \epsilon \phi + \sum_{k=1}^\infty I_k^+ \lambda^{-k}, \\ & \Lambda^- = \ln \lambda + (1-\epsilon)\phi + \sum_{k=1}^\infty I_k^- \lambda^k. \end{split}$$

In the Lax pair one should perform a substitution

$$\lambda \to \lambda \exp(-\epsilon \phi), \ \partial_{\lambda} \to \exp(\epsilon \phi)\partial_{\lambda}.$$
 $\partial_{x} \to \partial_{x} + \epsilon \lambda \phi_{x}\partial_{\lambda}, \ \partial_{y} \to \partial_{y} + \epsilon \lambda \phi_{y}\partial_{\lambda}, \ \partial_{t} \to \partial_{t} + \epsilon \lambda \phi_{t}\partial_{\lambda},$ 

In elliptic d2DTL case for  $\epsilon=\frac{1}{2}$  we get a symmetric Lax pair

$$\partial_{z}\Psi = L_{1}\Psi = \left( (\lambda e^{-\frac{1}{2}\phi}) \partial_{t} + \frac{1}{2} (\phi_{z} + \lambda e^{-\frac{1}{2}\phi} \phi_{t}) \lambda \partial_{\lambda} \right) \Psi,$$
  
$$\partial_{\bar{z}}\Psi = L_{2}\Psi = \left( (\frac{1}{\lambda} e^{-\frac{1}{2}\phi}) \partial_{t} - \frac{1}{2} (\phi_{\bar{z}} + \lambda e^{-\frac{1}{2}\phi} \phi_{t}) \lambda \partial_{\lambda} \right) \Psi$$

On the unit circle  $L_1 = \bar{L}_2$ .

#### Reciprocal transformation

To get symmetric non-Hamiltonian generalization of ellyptic d2DTL and symmetric Lax pair for it, we should also use a reciprocal transformation

$$t = \tau - \alpha m_0$$

(where  $\tau$  is a new 'time',  $\alpha$  is a parameter), which gives M of the form

$$M^{+} = M_{0}^{+} + (1 - \alpha)m_{0} + \sum_{k=1}^{\infty} m_{k}^{+} e^{-k\Lambda^{+}},$$

$$M^{-} = M_{0}^{-} - \alpha m_{0} + \sum_{k=1}^{\infty} m_{k}^{-} e^{k\Lambda^{+}},$$

$$M_{0} = \tau + x e^{\Lambda} + y e^{-\Lambda} + \dots$$

Derivatives transform as follows,

$$\partial_{\mathsf{x}} \to \partial_{\mathsf{x}} + \frac{\alpha \mathit{m}_{\mathsf{0}_{\mathsf{X}}}}{1 - \alpha \mathit{m}_{\mathsf{0}_{\mathsf{T}}}} \partial_{\tau}, \ \partial_{\mathsf{y}} \to \partial_{\mathsf{y}} + \frac{\alpha \mathit{m}_{\mathsf{0}_{\mathsf{y}}}}{1 - \alpha \mathit{m}_{\mathsf{0}_{\mathsf{T}}}} \partial_{\tau}, \ \partial_{\mathsf{t}} \to \partial_{\tau} + \frac{\alpha \mathit{m}_{\mathsf{0}_{\mathsf{T}}}}{1 - \alpha \mathit{m}_{\mathsf{0}_{\mathsf{T}}}} \partial_{\tau}.$$

L.V. Bogdanov (L.D. Landau ITP RAS, Moscow)

Talk at Landau Days 2009

23 / 26

Taking x=z,  $y=\bar{z}$ ,  $\epsilon=\frac{1}{2}$ ,  $\phi\to -2\phi$ ,  $\alpha=\frac{1}{2}$ ,  $m_0=-2\mathrm{i} m$ , we get

$$\Lambda^{+} = \ln \lambda + \phi + \sum_{k=1}^{\infty} I_{k}^{+} \lambda^{-k}, \quad \Lambda^{-} = \ln \lambda - \phi + \sum_{k=1}^{\infty} I_{k}^{-} \lambda^{k},$$

$$M^{+} = M_{0}^{+} + i m + \sum_{k=1}^{\infty} m_{k}^{+} e^{-k\Lambda}, \quad M^{-} = M_{0}^{-} - i m + \sum_{k=1}^{\infty} m_{k}^{-} e^{k\lambda},$$

$$M_{0} = t + z e^{\Lambda} + \bar{z} e^{-\Lambda} + \dots$$

 $m,\ \phi$  — real. Reduction: on the circle  $\lambda \bar{\lambda}=1$ 

$$M^+ = \bar{M}^-,$$
$$\Lambda^+ = -\bar{\Lambda}^-.$$



#### Lax pair

$$\partial_{z}\Psi = L_{1}\Psi, \quad L_{1} = (\lambda e^{\phi}u + v)\partial_{t} + ((\phi_{t}v - \phi_{z}) - \lambda u e^{\phi}\phi_{t})\lambda\partial_{\lambda},$$
  
$$\partial_{\bar{z}}\Psi = L_{2}\Psi, \quad L_{2} = (\frac{1}{\lambda}e^{\phi}\bar{u} + \bar{v})\partial_{t} - ((\phi_{t}\bar{v} - \phi_{\bar{z}}) - \frac{1}{\lambda}\bar{u}e^{\phi}\phi_{t})\lambda\partial_{\lambda}.$$

On the unit circle  $L_1 = \bar{L}_2$ .

$$u = \frac{1}{1 + \mathrm{i} m_t}, \quad v = \frac{\mathrm{i} m_z}{1 - \mathrm{i} m_t}.$$

#### **Equations** (for $\phi$ and m)

$$\begin{split} (v_{\overline{z}} + \mathrm{e}^{\phi} u \partial_t (\mathrm{e}^{\phi} \overline{u}) + v \partial_t \overline{v}) - \mathrm{c.c.} &= 0, \\ (\partial_{\overline{z}} (\phi_t v - \phi_z) + \mathrm{e}^{\phi} u \partial_t (\overline{u} \mathrm{e}^{\phi} \phi_t) - v \partial_t (\phi_t \overline{v} - \phi_{\overline{z}}) + u \overline{u} \mathrm{e}^{2\phi} \phi_t \phi_t) \\ + \mathrm{c.c.} &= 0 \end{split}$$

If m = 0 (u = 1, v = 0), first equation vanishes, second gives dToda for  $(-2\phi)$ .

If  $\phi = 0$ , second equation vanishes, the first gives

$$(v_{\bar{z}} + u\partial_t(\bar{u}) + v\partial_t\bar{v}) - \text{c.c.} = 0$$

L.V. Bogdanov (L.D. Landau ITP RAS, Moscow)

# The End