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Introduction

» Linear operators (Lax pairs) — vector fields, meromorphyc in spectral
variable and including derivative ) over spectral variable (N 'space’
variables + spectral variable)

» Connected to nonlinear vector Riemann-Hilbert problem of the type
W+ — F(lll,),

where W, W_ are boundary values of (N+1)-component vector
function on the sides of some curve (e.g. unit circle)

> One singular point case — dispersionless KP hierarchy, second
heavenly equation hierarchy, Dunajski system hierarchy. Special vector
fields (area-preserving or volume preserving). A simplest general
position case (N=1) is connected with Manakov-Santini system.

» Two singular points case for N=1 and Hamiltonian vector fields
correspond to dispersionless 2DTL hierarchy. We consider this case
for general vector fields.
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Dressing scheme

vector Riemann problem of the form
WUt =F(W),

where W W~ denote boundary values of the (N+1)-component vector
function (column) on the sides of some oriented curve 7 in the complex
plane of the variable \.

Linearized problem

_D(F) _ D(F) ([ OF;
V= 5wy’ M) by, T (8%)

Let W depend on a set of extra variables t, (times). Then %W, and also

.)\kaitn\ll,. /\ka%lll, satisfy linearized problem, and,. sugge.sti.ng unigueness of
its solution (or absence of nonzero analytic solutions), it is possible to
develop a scheme of constructing linear equations, which give nonlinear
integrable PDEs as compatibility conditions.

L.V. Bogdanov (L.D. Landau ITP RAS, Moscow) Talk at Landau Days 2009 4 /26



Generating relation
Let us consider a differential form

w=dVOAdWI A AdUN,

where the differential includes both times and a spectral variable,
df = >0 Opfdt, + OrfdA. The condition on the curve 7 is

D(F)| _

+ _

cT D(W)‘“’

Let us fix a set of N+1 variables A, t1, ..., t, and introduce a Jacobi matrix
Ji= O, 0<ij<N, =2 o= 1<k<N
ij = 0¥, SENAS AR 0_6)\7 k—atka S KX V.

Then for normalized form Q = (det J) 1w
Qr=Q

Generating relation, plays the role similar to Hirota bilinear identity.
L.V. Bogdanov (L.D. Landau ITP RAS, Moscow) Talk at Landau Days 2009 5/26



General (N+2)-dimensional one-point hierarchy

N+1 formal series depending on N infinite sets of ‘times’

WO =X+ ) W, ),
n=1

WE =Tt (W0)7 ) WL )W)
n=0 n=1

where 1 < k<N, th = (tk, ... tk,...). We denote 0% = %, W — vector
(column) with components WO, ..., WN  projectors (3% u,\")+

=300 unA", (2% unA™) =" up A
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Generating relation

The hierarchy is defined by the generating relation
(JotdWo A dwt A - A dwl)_ =0, (1)

where the differential includes times and spectral variable,

N oo

df =Y ) " oFfdtf + 0xfd,
k=1 n=0

and Jy — determinant of Jacobi matrix J,

. 0 0
Ji=0W, 0<i,j<N, 80=a,akzmv I<k<N
X

)

where xk = t&. Relation (1) generates Lax-Sato equations.
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Proposition
Relation (1) is equivalent to the infinite set of Lax-Sato equations

N
oKW => (S (V)" ), 0W, 0<n<oo,1<k<N. (2
i=0

(1) = hierarchy (2) follows from

Lemma
Given generating relation (1)= for arbitrary first order operator U,

ZZ 00K + 1O\t 12)0),

with ‘plus’ coefficients ((u¥)_ = u® = 0), the condition (UW), =0
(where for WX, k # 0 derivatives are taken for fixed W°) implies that
Ov =o.
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Simplest equations
The basis A9V, A"O WV, 0 < n< oo, 0 < k < N. We expand 8{‘\11 into
the basis

N
OfW = (ADk — Y _(Okip)dp — (Okt0) )V, 0 < k <N,
p=1

Compatibility condition for the pair of flows with 8{‘ and 0], k # q

OKDqlt — OOk + [0k, D] = (Vi io)Dg — (gtio) s,
K Dquo — O Oug + (9 01)Dgug — (Dq 1) kg = 0,

where @i is a vector field, & = Zgzl ukOk. The case N=2 + volume
preservation reduction gives Dunajski system.

For ug = 0 we have only the first equation without the rhs. This case
corresponds to general vector fields without the derivative on spectral
variable, and, after Hamiltonian reduction, represents hyper-Kahler
hierarchies (Takasaki).
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Dunajski equation
A canonical Plebanski form of null-Kahler metrics (signature (2,2))

g = dwdx + dzdy — ©,,dz* — ©,,dw? + 20, ,dwdz. (3)
The conformal anti-self-duality (ASD) condition leads to Dunajski equation

Oux + Oz + 0Oy, — O3, = f, (4)

Of = fuw + fyz + Oy fic + O, fyy — 20, £, = 0. (5)
Linear system LoV = L; ¥ =0, where ¥ = V(w, z, x,y, A) and

Lo = (Dw—©xd, +O,,0) — Ay + £,05,
L1 = (0;+Oudy — Ouydy) + Ay — fid.

The case f = 0 corresponds to metrics of the form (3) satisfying Einstein
equations, and Dunajski equation (4), (5) reduces to Plebariski second
heavenly equation.
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Dunajski equation hierarchy

General one-point hierarchy for N=2 + reduction Jyp =1

WO =X+ ) (e )N,
n=1

[ee] (e}

Wh= ) 6 (W0)" 4 Wt ) (wO)
n=0 n=1

V= 3 B0 3w )
n=0 n=1

Generating relation

(AW AdVt AdW?) =0
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Lax-Sato equations of Dunajski hierarchy

RV =+ <(\u°)" $§ $§ >+an — ((wo)" $§ $§ >+ay\u -
RV = — <(w°)" $§ % >+axw + ((wf’)" $§ % )+ayw +

(plus a condition Jo = 1). For W0 = X\ Dunajski equation hierarchy reduces
to second heavenly equation hierarchy (Takasaki), while for W2 = y it
reduces to dispersionless KP hierarchy

L.V. Bogdanov (L.D. Landau ITP RAS, Moscow) Talk at Landau Days 2009 12 /26



First two flows
0TV = (uy Oy — uxdy + N0y — FON)V,
IRV = (vd, — v, 0x + N0, — £,04)V,

where
u=Vv3 v=vl =

det o =1 = u, + vx =0, then we introduce a potential ©, v = ©,,
u= —O,. After the identification z = —t}, w = t? we get Lax pair for
Dunajski equation

Oux + Oz + 00y, — 0%, =,
fxw + fyz + eyyfxx + eXxfyy - 2(9xyfxy = 0
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Manakov-Santini system

Ut = Uy + (qu)X + Vxlxy — UxxVy,

Vst = Vyy + UV + VxVxy — VxVy, (6)

Lax pair

Oy VW = (A — vx)0x — uO\)V,
OV = (M = vied + 1 — v)0x — (U + uy )ON) V.

For v = 0 reduces to dKP (Khohlov-Zabolotskaya equation)

Uxt = Uyy + (UUX)X7 (7)

reduction u = 0 gives the equation (Pavlov)
Vit = Vyy + ViVay — Vi Vy. (8)
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Manakov-Santini system hierarchy
General hierarchy with N =1

L=w0= )+ i wo()A™", (9)
n=1
M=vl= i ta(WO)" + iw%(t)(wo)—". (10)
n=0 n=1

Generating relation
(Jytdwo Adwt)_ =, (11)
where
LR 1y—1 1 2
J= (Wé \Ui\> . Jo=detJ =14+ VINTT (O VE —UDA2
Lax-Sato equations
W = (Jy W (WO)), W — (U5 WO (WO)"), Dy,
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Lax-Sato equations for the first two flows

AW = (A = vx)Ox — uxO\) W,
oV = (()\2 — VA + U — vy )0x — (UuxA + uy)Ox) W,

where u=W? v =Wl x=t5, y =t t = t. Compatibility condition
gives Manakov-Santini system (6).

To reduce Manakov-Santini hierarchy to dKP hierarchy, one should
consider the condition Jy = 1 (corresponds to Hamiltonian or
area-preserving vector fields), then Lax-Sato equations of Manakov-Santini
hierarchy directly reduce to Lax-Sato equations of dKP hierarchy.
Respectively,the reduction W% = )\ leads to the hierarchy connected with
equation (8) (Pavlov), considered also by Martinez Alonso and Shabat.
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Non-Hamiltonian 2DTL generalization
A simplest generalization of dispersionless 2DTL equation reads

(ei¢)tt = mt¢xy - mx¢ty,
mttef(b == mtymx - mxymtu (12)

with a Lax pair
0 = (O 90— Ao~ 6000 ) w.
t

—¢ —¢
oW = <1eat+ (c )taA> v

A mg mg

For m = t system (20) reduces to dispersionless 2DTL equation

(e_¢)tt = d)xya

Respectively, ¢ = 0 reduction gives an equation (Martinez Alonso and
Shabat, Pavlov)

Myt = My, My — My, M.
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Generalized dispersionless 2DTL hierarchy

We generalize the scheme of dispersionless 2DTL hierarchy
(Takasaki-Takebe).

Formal series (‘+' may be associated with infinity, and ‘-" with zero, usually
we suggest they define the functions outside and inside the unit circle),

o e}
A=A+ IATF AT =Ind o+ 0N
k=1 k=1

o0 o
M+:M6r+sze*k/\+, /\/lszo_-l-mo—i—Zm;ek’\*,
k=1 k=1

oo [e.e]
Mo = t + xc + ye ™ + Zxke(k+1)A n Zyke—(k—i-l)A
k=1 k=1

Usually for simplicity we suggest that only finite number of xx, yx is not
equal to zero.
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Generating relation of the hierarchy
((Jo)"XdA A AM)T = ((Jo) "TdA A dAM) ™, (13)

where Jy is a determinant of Jacobi type matrix J,

J_ (MO DA
~Lawm am)°

the differential d takes into account all variables t, x, xx, yx and a spectral
variable \, and (...)", (...)” here are not projectors, but mean that all
series have superscript ‘+' or ‘-’ (or the functions are taken inside and
outside the unit circle). As a result, the expression in generating relation is
meromorphic.
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Lax-Sato equations

W = (U AN DN 9 — (U5 (@A) DN ) 0y) W,
0, = (U5 (VA Je P IN) o, — (U (B, )e IV o, ) w

where

M ox,” " Oy,
00 -1
( Z Ck)\k)_ = Z Ck)\k, ( Z Ck)\ ch)\k
k=—o0 k=—0o0 k=—o0

The flows with Oar and 9, give a Lax pair for generalized d2DTL ,
m = mqg + t.
Condition Jy = 1 reduces the hierarchy to d2DTL, condition A =In X to

the hierarchy considered by Martinez Alonso and Shabat, also Pavlov.
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Transformations. Symmetric generalization of elliptic
d2DTL

We search for non-Hamiltonian generalization of ellyptic d2DTL
(e_¢)tt = ¢z,

preserving the symmetry. Gauge transformation (present in d2DTL case,
Takasaki), changes Lax pair, preserves equations

X — Aexp(—ed),
where € is a parameter. After this transformation we get A of the form

o0
AN =Ind—ep+ > LA
k=1

A =Inx+(1-e)p+ ) A~
k=1
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In the Lax pair one should perform a substitution

A — Aexp(—€g), Or — exp(€g)Oy.
Dy — Oy + Adxr, By — Dy + NDyOr, Fr — Oy + AdeOr,

In elliptic d2DTL case for € = % we get a symmetric Lax pair

W = 1w — ((Ae—%%at P2t Ae—%%t)xax) v,

05V = LW = <(ie;¢)at - %(052 + /\e§¢¢t))\a,\) v

On the unit circle L1 = Ly.
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Reciprocal transformation
To get symmetric non-Hamiltonian generalization of ellyptic d2DTL and
symmetric Lax pair for it, we should also use a reciprocal transformation

t=7—amg

(where 7 is a new ‘time’, « is a parameter), which gives M of the form

0.9]
— +
Mt = M(;"—l—(l—a)mo—i—Zm;fe kAT
k=1
o0
M~ =My —amg+ > mge
k=1

Mo =7+ xe™ +ye ™ N+ ...

Derivatives transform as follows,

Qmox

am
O — Oy + Ory Oy — 0y + — Oy — By + 0T
1—amp, 1—amp, 1 —amg,
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Takingx =2z, y=2z,e= % ¢ — —2¢, a= % my = —2im, we get

A =InA+o+ D KA A =Inx—¢+) Ak
k=1 k=1

[e.e] oo
M*=Mg +im+> mfe™ ™ M~ =My —im+> myek

k=1 i
My=t+ze +ze N4 ...

m, ¢ — real. Reduction: on the circle A\ =1

Mt =M,

AT =—A".
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Lax pair
O,W = LW, L1 =(Xe®u~+v)d: + ((¢rv — bz) — Aue®pe) Ay,
oW = LW, [p= (%e% + V)0 — ((¢pev — ¢z) — %ae%t)AaX
On the unit circle L1 = Ls.

1 im,
u= ; vV = " .
1+1m1_-’ 1—lmt

Equations (for ¢ and m)
(vz 4+ e®ud(e®T) + v v) — c.c. =0,
(02(pev — ¢2) + P ude(Ue?$t) — vO($e7 — bz) + ulie®® Prrr)
+cc.=0

If m=0 (u=1, v=0), first equation vanishes, second gives dToda for

(—=29).

If » =0, second equation vanishes, the first gives
(vz + () + vOv) —cc. =0
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The End
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