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Potential Flow of 2D Ideal Fluid

-

Y

©

-
P

\
T —
n(z,t)

X

5 + 3 VoP +gn="1.
% _|_77x¢x — ¢y

irrotational

A¢(x,y,t) =0

at y = n(x,1).
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NLSE approximation

fFrom the equation for potential low

0 P
¢+ ¢+gv7 = —— at z =1,
ot 0
0
87757 + N0 = O, at z = . (1)
one can derive nonlinear Shredinger equation:
0A wWo 1
— A — A, — —wok?|A|*A = 0. 2
(G + Codks) = g A = ookd A &)

A is the envelope of the surface elevation n(x,t), so that

1 .
—(A(z, t)elwot=hor) L c) (3)

n(z,t) =3
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NLSE Soliton

fSoliton solution for A(x,t) is

A cos(ko(z — Vinaset))
V2k2 cosh(Az — Cyt))

Az, t) = e ™

(4)

A2 B CUO)\Q
- 8k2

Wayvetrain of the amplitude a with wavenumber kg is unstable

with respect to large scale modulation 0k. Growth rate of the

instability 7 is

LHere wo = v/ gkg.



Conformal mapping

fDomain on Z-plane Z = x + 1y,
—oo < x <00, —oo<y<n(xt),
to the lower half-plane,
—o<u<oo, —oo<v<0,

W-plane W =u+w.
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Equations for Z and ¢

ﬁf conformal mapping has been applied then it is naturally

introduce complex analytic tfunctions

=z —+ Zy, and complex velocity potential O =y —+ 1 HW .
Zt — ZUZU,

. - (I)fu, 2 .
o, = U, — P(”Zu’L) +19(Z — u).
U is a complex transport VeAlocity:
. —HVY,
U= P( 7. ). U — w

Projector operator P(f) = 21+ iH)(f).
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Cubic equations for R and V

fSurface dynamics (and the fluid bulk!) is described by two
analytic functions, R(w,t) and V (w,t). They are related to

conformal mapping Z and complex velocity potential:

1
R — Z—w, (I)w — —ZVZw

For R and V' dynamic equations have the simplest form:

R, = i[UR —UR],
V, = i[UV' — B'R]+ g(R - 1).

Complex transport velocity U is defined as

U=P(VR+VR), and B=PWVV).
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NLSE and Dysthe and Conformal variables - I

|7(30nsider weakly nonlinear wave train. Use r instead of R T
r=R-—1.
Then equations for R and V transform into

re +1V' = i(=U +Vr' =V'r+Ur' —rU"),
Vi—gr = i(VV' =B +UV'—rB’). (6)

U = PVFi+Vr). (7)



NLSE and Dysthe and Conformal variables - 11

fWe will look for the breather solution. It is periodic in some T
reference frame moving with velocity c. In this reference frame

equations for r and V read

re—cr' +iV = (=U +Vr'=Vr+Ur' —rU') = F,
Vi—cVi—gr = i(VV' =B'+UV'—rB)=G.

We look for the solution of these equations in the following form

ro= Zrn(u,t)em(m_k“>, k>0
n=0

V = ZVn(u,t)em(Qt_k“>. (8)
n=0



NLSE and Dysthe and Conformal variables - 111

fThereafter wewillput k=1, c=1 O % The leading terms T

29
in expansion (8) are

T, Vi~e << 1.

Then
Iy~ Vo~ €Y g~ Vo~ el (9)

rn, Vp are "slow" functions of w. In other words

/ V/
:—" Fe<<l, (10)

For the slow componets (time derivatives)

oV,

| T p e <<l (1)



NLSE and Dysthe and Conformal variables - IV

|7To proceed in derivation of envelope equation we have to learn T
how to calculate projective operator of functions like a(u)e"™*.

Here a(u) - any "slow" function ofu.

~ 0, m > 0,
P(e*™a(u)) = { (12)
e*ma(u), m <0

Only if m = 0, projection is a nontrivial operation.

Thereafter we put

and replace

o




NLSE and Dysthe and Conformal variables - V

sting the rule (12) we find with accuracy up to €’ T

Vo = &(=it® + Suv)
ry = 62(1?24'@'6157?/)7 A
ro = i P(UP), Vo=EP(ulY (14)

r1 and Vj are related with relation

rn="i-sV (15)

1 - - .
2it) + 70" + |0 = e [0 — pH(WY - 2i(wl*v)|  (16)
This is the Dysthe equation in conformal variables. In the limit
uf e — 0 it gives standart NLSE. J



Stationary Solution - FREAKON

f = A(u)e®e®. T

A(u) and ® - are real functions satisfying the equations

1 1 1 A
—A+ ZA” + A3 — ZA<I>’2 = —¢ {(5 + 2A%)®" + AKA2} . (17)

d' = ¢€(1—6A%). (18)

Keeping in (17) terms of the order of €* is exceeding of

accuracy. Thus it can be simplified up to the form

1 .
—A+ ZAN + A% + eAKA* = 0. (19)

Lf( is pure negative, Ke'k* = —|k|et, J



Stationary Solution - FREAKON

Fquatlon (19) realize minimum of the functional T
OH
H = - -——A’2 Lary Carka (2
/ { + M + 1 A = 0. (20)
Let us A = —5-. a - is still unknown value. As a result
2 1
H = —§a2 + (6 —0.22¢)a”

Condition g—z = 0 gives

5
_ | 21
“ ’¢1—13% (21)

In the limit € — 0 we get the NLSE result, @ = v/2. One can
Lsee that relatively small € leads to the strong deviation from J
the NLSE limit.
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NLSE SOLITON - FREAKON

fWe compare breather-type solution with the soliton shape. In T
the Figure 1 envelope is the following:

a

A =

cosh \z

with a = 0.0084, and A = 17. If it were NLSE envelope with
the same A\ = 17, than a would be 0.0048.
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NLSE Solition - FREAKON

NLSE solitons are lower and wider. This is in agreement with T
the theory.

Dysthe and Sredinger
7 T

LF1gure 2. Solitons for NLSE and Dysthe equation.J
= 4.0, e = 0.290.
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NLSE Solition - FREAKON

Dysthe and Sredinger
T T T T

25 T
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Figure 3. Solitons for NLSE and Dysthe equation.
L)\ = 15.0,e = 0.070.



Giant Breather, k-w spectrum
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Figure 4. Negative frequency is absent!. J
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