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Superconductivity v/s Localization

e Granular systems with Coulomb interaction
K.Efetov 1980 et al “ Bosonic mechanism”

e Coulomb-induced suppression of Tc In
uniform films  “Fermionic mechanism”

A.Finkelstein 1987 et al

 Competition of Cooper pairing and

localization (no Coulomb)
Imry-Strongin, Ma-Lee, Kotliar-Kapitulnik, Bulaevsky-Sadovsky(mid-80’s)
Ghosal, Randeria, Trivedi 1998-2001

There will be no grains and no Coulomb in this talk !



Plan of the talk

1. Motivation from experiments
BCS-like theory for critical eigenstates

- transition temperature
- local order parameter

3. Superconductivity with pseudogap
- transition temperature v/s pseudogap
- tunnelling conductance
- spectral weight

4. Conclusions and open problems

"



Major exp. data calling for a new theory

« Activated resistivity e

In insulating a-InO,
D.Shahar-Z.Ovadyahu 1992,
V.Gantmakher et al 1996

T, = 3-15K
* Local tunnelling data

B.Sacepe et al 2007-8

o /B (LATK)

* Nernst effect above T,
P.Spathis, H.Aubin et al 2008




Class of relevant materials

 Amorphously disordered
(no structural grains)
e Low carrier density
(around 102t cm at low temp.)

Examples:

INO,, NDN,, thick films or bulk (+ B-doped Diamond?)
TIN thinfims  Be, Bl (ultra thin films)



Phase Diagram
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Theoretical model

Simplest BCS attraction model,

but for critical (or weakly)
localized electrons

Ho - gl dor W19 1Y W,

H

Y =2 Cj LIJJ' (r) Basis of localized eigenfunctions

M. Ma and P. Lee (1985): S-l transition at o, = T,



Superconductivity at the
Localization Threshold: 6, — O

Consider Fermi energy very close to the mobility
edge:
single-electron states are extended fractal
populate small fraction of the whole volume

How BCS theory should be modified to account

for eigenstate’s fractality ?

Method: combination of analitic theory and numerical
data for Anderson mobility edge model



Mean-Field Eq. for T,

A(r) :[Ii’;r-l[r, A )d (9)
where kernel .‘l’T- 18 equal to
C o A tanh £ + tanh & P
Kp(r,r') = Eb’nlzj ii: o~ A AT (10)

Standard averaging over space A(r) = A leads to "Anderson theorem™ result: totally
incorrect in the present situation.
The reason: critical eigenstates ;(r) are strongly correlated in real 3D space, they fill

some small submanifold of the whole space only.



In fact one should define T, as the divergence temperature of the Cooper ladder
. =1
¢ — fl _ H)

Thus averaging procedure should be applied to € nstead of K

We expand C in powers of K and average over disorder realizations. Keeping main
sequence of resulting diagramms only, we come to the following equation for determination
of T,

H9=7 [ - 0



M(w)=VM; = ft:"?{rjt:h?{r}ddr for |& =& =w

For critical eigenstates

Lige =+ 20
one finds
.
M(w) = (%) (M;) ~ 3¢~ (d—da) [~d2
ot
where
o & Ey = 1/13’[]33
T d
is a measure of fractality _
o | D, =13 in3D
Usual "dirty superconductor™:
Mw)=1 ¥=10

3D Anderson model: y =0.57
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FIG. 2: (Color online) Correlation function M(w) for 3DAM
with Guassian disorder and lattice sizes L = 10, 14, 20 at the
mohbility edge £ = 5.5 (red, blue and black points) and at
the energy E = 8 inside localized band (green points). Inset
shows < values for L = 10.12.14.16.20.



Modified mean-field approximation
for critical temperature T,

A

A€ =5 [ danlOMIE - A

i = N = & Ftanh(&; /2T

L]
hl

T\, ~) = EoAY 7 C(7)

i

Forsmall )  this T, is higher than BCS value !

arxiv:0810.2915 Y.Yanase & N.Yorozu: T, for doped diamond, Si and SIiC



Virial expansion method

(A.Larkin & D.Khmelnitsky 1970)
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T, from 3 different calculations

Modified MFA equation
leads to:

(6.5 + 0.8)\177

FIG. 16: Ratio 2A(0)/Te as function of 4.
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Order parameter In real space

A g . B
Alr) = E Z ,ﬂ;;?;r;:'ﬂ?ﬁ[l‘:l

i =i = ﬁfl t.;-l.nh(:_f._!;/QT) Ak > j.(:_f) for ¢ = ¢,

L]
hl

—— 1 o, -
A =g [airddm = [ den©)aze)
0

ﬂ 1 : == .
A(r) = ﬁff:fdrﬂm =A] din(E)AL(€)
0



Fluctuations of SC order parameter

With Prob=p<<1 A(r)=A , otherwise A(r) =0 ==

Al ))2
I - - ¥
e (T) i“

i — — )\Q W= = el
SC fraction — ) =Gy \ B

prefactor = 1.7 for y=0.57

' ' ! 1—dy /d)in—1
Higher moments: - I::T,;{fEﬂ:Ji' n/d){n—1)

(P,) ~ p—(d=dq)(qg—=1) 1 —dq(q—1) . [ —dq(q—-1)



Tunnelling DoS

B -
v(e,r) = EE (1 t é) [6(e — £5) +8(e + ;)] 95 (r)

I

Average DoS:

E =55
.y L=21
vy d-f'.ﬂ-'- | aver & = 5 sites
v(e) = vo
de

30 gauss AM, W=4

e(€) = V€ + A%(¢)

g= G.DEJ‘»(EJ = 1.7 fined

Asymmetry in loc DoS:

rfﬂ_(s,r) — %(rs(f,r)—v(—f,ry

v2(e,r) =

1 C
2

%(E) ? . e
— | v(¢) - [M(0) — M(2¢(¢e))]



Neglected : off-diagonal terms

Maus = [ e ()05 (0 ().
Non-pair-wise terms with 3 or 4 different eigenstates were omitted

To estimate the accuracy we derived effective Ginzb  urg-
Landau functional taking these terms into account

F [T (r)] defined in terms of an envelope function

U(r) = Alr)/Alr) Afr) =

bo |

> Appi(r)
k

For[¥(r)] = M;.Tf f::f-r (ﬂ.r;r]HI'E (r) + %i"ﬂr] - fi'-'|?11f[r]|2)

52 H_,-'E

o {:-.E[IIG'TE;IE = 1 (:'l'id ol (__—.3 ot 1
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Superconductivity at the
Mobility Edge: major features

- Ciritical temperature T, Is well-defined through
the whole system In spite of strong A(r)
fluctuations

- Local DoS strongly fluctuates in real space; it
results in asymmetric tunnel conductance

G(V,r) # G(-V,r)

- Both thermal (Gi) and mesoscopic (Gi)
fluctuational parameters of the GL functional are
of order unity



Superconductivity with Pseudogap

Now we move Fermi-level into the
range of localized eigenstates

Local pairing in addition to
collective pairing



Local pairing energy

1. Parity gap in ultrasmall grains
K. Matveev and A. Larkin 1997

A < & No many-body correlations

0

— A
Ap = 5)\(5 Ar = A/ (1 — Alog(eg/d)). Ap = 2ln <
1 i ﬂ



2. Parity gap for Anderson-
localized eigenstates

The increase of thermodynamic potential €2 due to ad-
dition of odd electron to the ground-state is

59(}& — £ﬂ1+1 — gﬂl-l—l o gm—l—l + ém—|—1 —
g, y—1
- _ﬂlr*m,—kl =+ O(‘V )
& =& —5M; 2

Energy of two single-particle excitations after depa iring:

2&}3 — sﬂl—l—l — sm + g*ﬁ'{f—ﬂl — %(*ﬁf{ﬂl - ﬂ'irﬂl—l—l) T O(V_1)

3 _ 3\
(:fl,fé} — 3y—(d—da) L_'-’iﬂ Ap = EQ'F N Lpoe/ )% = EEEI (

loc *

_E-IE. . _EI_F' !-"l'.';g
Eq



P(M) distribution

| 3D AM, Gauss disorder, W=4,E =55

0 Z 4
MM

]

8

1.0

0.0 L

PDeltaPnor20.eps

)
30 Gauss AM, W=4.0
g=0.08/v(E )=1.7 fixed
E=8.0 L=32

, 3 1
Ply) = (Aly Jexp(-¢/y -by -b.y')
A=180+0.03, c=1.08:001,
b,=0.15:0.02, b, = 0.030 + 0.003 _




Activation energy T, from Shahar-
Ovadyahu exp. and fit to theory

0.05

|
0.10

0.15 0.20

G-'(kFI) (au)

|
0.25

0.30

" The fit was obtained with

single fitting parameter
A D.E}LEQ

Example of consistent choice:

A\. =0.05 FEy =400k



Critical temperature in the
pseudogap regime
MFA:

Alg) =3

! / ACn(OM(E - OAQ)

—

M =i = & L tanh( /2T

Here we use M(w) specific for localized states

d

IS large
loc 9

MFA is OK as long as Z ~ vol.L



Correlation function M(w)

-.--_fr:ﬂ":"L:E” l No saturation at w <3, :
'._- 5 \\ M(w) ~1In? (8, / w)
_ "._ e = ‘“—*‘Efﬁ (Cuevas & Kravtsov PRB,2007)
10° b A7 -

Superconductivity with

s . .
= Tc < 9, is possible
=
10' - i This region was not found
previously
Here “local gap”
30 Gauss, W=4, Etr.}.ﬁ. n:f[l.ﬁ
, . . . exceeds SC gap :
10* 10° 10° 10° 10" 10'
1 . A0y
¢ Ap = — 4y, l )
20 "l::"r.] ar,

FIG. 2: (Color online) Correlation function Mw) for 3DAM
with Guassian disorder and lattice sizes L = 10, 14, 20 at the
mobility edge E = 5.5 (red, blue and black points) and at
the energy E' = 8 inside localized band (green points). Inset
shows « values for L = 10.12.14.16.20.



Critical temperature in the
pseudogap regime

MFA:

Me) =5 [ don(@)M(E - 080

) i = Nii = E: ! t-z-l-]l]l(:f.i / QT):

We need to estimate 2 ~ ol L
R, ~ 2L, In %‘5 > Lioe 2 i T M

R2 =
! Zj M;

T It is nearly constant in a 5
very broad range of °L

5 L T\._f TL

Zog = 1T Ry =




Virial expansion results:

1. versus Pseudogap

-
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FIG. 25: (Color online) Virial expansion results for T, (red
points) and typical psendogap Ap (black) as functions of Er.
The model with fixed value of the attraction coupling constant
g = 1.7 was used; pairing susceptibilities were calculated using
equations derived in Appendix B.

Transition exists even at

10’ T ' .
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FIG. 26: (Color online) Virial results for T, (red points), typi-
cal psendogap A p (black) and the corresponding level spacing
dp, (green), as functions of Er on semi-logarithmic scale.

6L >> TcO



Single-electron states suppressed by pseudogap

Psecdo ep:u" represewtafiou
L[

+
st =ab,at  Si-a,a i 7 5 3#* M eS¢
I““‘ M [T M Z
25 =a ar +a5, 8 + (f + &)
B: , blocked “shdes
H Bes acts oh EVeh sec;‘o,-: M,w - \l__ MG Iv)
q@ slules which are s’ “40*0& volume

Z- §illedl oF empty

“Pseudospin” approximation

VAL, UUT Lim Effective number of interacting neighbours



Third Scenario

e Bosonic mechanism: preformed Cooper pairs +
competition Josephson v/s Coulomb — S| T in arrays

* Fermionic mechanism: suppressed Cooper attraction, no
paring— S M T

e Pseudospin mechanism: individually localized pairs
- S| T inamorphous media

SIT occurs at small Z and lead to paired insulator
H=2) &s;—) M;j(sisi + s{s)
i ij

How to describe this quantum phase transition ?
Cayley tree model is solved (L.loffe & M.Mezard)



Strong local pseudogap above T.:
experiment B.Sacepe et al

G(V) [a.u]

At T=Tc - almost fully developed gap but no coherence peak



Point-contact spectroscopy

Generalization of the Blonder-Tinkham-Klapwijk
formula for pseudogaped SC

le transport: eV, = Ap + A Scales as G
2e transport: 2eV, = 2A Scales as (G,)?
10— unvisible in tunnelling regime G, <<1

Double-peak structure at
moderate G,

G/G(0)

R I I D

0 05 1.0 1.5 2.0
V/Aq



Full Spectral Weight K(T)

.- E ﬂm-:.r _
K“T) = = [ Ro(w.T)dw+pu(T) = K(D)+pu(D)
0
Is usually (BCS) const across Tc . contributions from superconductive
response and from DoS suppression cancel each other.

It is NOT the case for underdoped HTSC :
Experiment: D.Basov et al 1994 Theory: L.loffe & A.Millis 1999

The same effect is even more pronounced in Pseudogaped SC.:

K(T.) - K(0)

K({T.) gMy 1
K(T.) - -

Ps(0) T. Zef

[

bali | b=

KtOt(T)A




Qualitative features of
“Pseudogaped Superconductivity™:

« STM DoS evolution with T

* Double-peak structure in point-contact
conuctance

 Nonconservation of full spectral
weight across T,



S-I transition on Cayley tree

example with branching number g =3

() H=2 Z &is7 — 3 Mij(s7s¥ + s¥s?)

] ]

\Oég Eq.(1) contains random energies &, (1)

Large bandwidth W

M; =M for nearest neighbours

Full self-consistent equation can be written

for distribution functions of local fields A,

Control parameter: g =gM/W



Phase diagram

Hopping insulator

Full localizatiqn:
Insulator with
Discrete levels

Superconductor
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Conclusions

Pairing on nearly-critical states produces fractal
superconductivity with relatively high T, but very small
superconductive density

Pairing of electrons on localized states leads to hard gap
and Arrhenius resistivity for 1e transport

Pseudogap behaviour is generic near
S-1 transition, with “insulating gap” above T,

New type of S-I phase transition is described
(on Cayley tree, at least)



Major unsolved problems (theor)

1. How to include magnetic field into the
“fractal” scheme ?

e 2. Transition between pseudogap SC and
Insulator.  Why Cooper pair transport is
activated ?

« 3. Rectangular gap in local tunnelling ?

4, Size-dependence of SIT (Kowal-
Ovadyahu 2007)



Coulomb enchancement near mobility edge ??

Normally, Coulomb interaction is overscreened,
with universal effective coupling constant~ 1

Condition of universal screening: 20 [(T.K) ~ (gn/aﬂcr)z/m > 1

ascr 18 the Thomas-Fermi screening length, o = (EE kr / 6ﬂ'2) ( k FZ)
Example of a-InO, bad dirty metal with kgl ~ 0.3

e’kp ~ 5000K the ratio o /T, ~ 10

dielectric constant k > 30

Effective Couloomb potential is weak:
p~20/(T.k) <1



Nernst coeff. In a-InOx
P.Spathis, H. Aubin et al 2007

10" —— .
; uﬂ/// —0— o, /B (B—0)
10~ - {:I:K}f B (USH) -
2 Similarity to
— & underdoped
< 0 3 HTSC
<]
! A
R . . ) \ 1
E;ﬂ 10™ _E m“z ri Nbg_HSim: H‘“F‘D- —
tﬁx < 107 1 > D‘D‘ E Exponent 7.6 ??
1{]—5 B i "%b\ T—?.ﬁ EI% 1
3 !:E;_Fllﬂ_‘r qth O g 1 0 E
= r On O ol ]
s 05 1 5 \D
1{]_6— . |T.(K:.] ] A I P
2 5
T (K)

No way to describe INO , data by Gaussian fluctuations  contrary to NbSi
case: M.Serbyn et al, Phys.Rev.Lett. 102, 067001 (2009)
K.Michaeli and A.Finkelstein arxiv:0902.2732

“Phase fluctuations” ? Where the amplitude comes f rom ?



