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The property of multidimensional consistency is applied for the
classification of integrable 3-dimensional equations of Hirota,
or dKP type. It is proved, under very general assumptions,
that the list is exhausted by dKP equation itself and its several
modifications.
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Notations

• x denotes a map Zd → R

• the arguments are omitted: x = x(n1, . . . , nd)

• the subscripts denote partial shifts:

xi = Ti(x) = x(. . . , ni + 1, . . . )

• all equations are assumed autonomous, that is their coefficients do
not depend on n1, . . . , nd



3D consistency

An equation of discrete KdV-type

f(x, xi, xj , xij) = 0

is called 3D-consistent, or consistent around
a cube, if the value x123 as the function
on initial data x, x1, x2, x3 does not de-
pend on the order of computation.
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Typical examples:

discrete KdV: (x− xij)(xi − xj) = a(i) − a(j)

discrete sh-Gordon: a(i)(xxi + xjxij) = a(j)(xxj + xixij)

[1] F.W. Nijhoff, J. Atkinson, J. Hietarinta. arXiv: 0902.4873.

http://de.arxiv.org/abs/0902.4873v1
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4D consistency of dBKP equation (or Hirota-Miwa, or
dNVN)

The set of four equations

x1x23 − x2x13 + x3x12 − xx123 = 0,
x1x24 − x2x14 + x4x12 − xx124 = 0,
x1x34 − x2x14 + x4x13 − xx134 = 0,
x2x34 − x3x24 + x4x23 − xx234 = 0

is 4D-consistent, that is the value x1234 as the
function on initial data x, xi, xij does not de-
pend on the order of computation.

Remarkably, these equations imply a similar
equation on odd/even sublattices in Z4:

x14x23 − x13x24 + x12x34 − xx1234 = 0.
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Another example is the double cross-ratio equation

(x− xij)(xjk − xki)
(xij − xjk)(xki − x)

=
(xijk − xk)(xi − xj)
(xk − xi)(xj − xijk)

.

Again, the value x1234 does not depend on the order of computation (al-
though in this case no equation appears on odd/even sublattice).

Consistency property is a discrete version of the notion of higher symme-
try for integrable equations. In contrast to 2D case, only few 3D integrable
equations are known. Double cross-ratio and several other modifications are
related to Hirota-Miwa equation via certain difference substitutions; another
example is the discrete CKP equation.

However, the classification problem for this type of equations is very dif-
ficult and we address here to a bit more simple class of dKP-type equations.



Hirota (dKP) equation

dKP equation can be obtained from dBKP
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x(m,n, k) → amnbnkcmkx(m,n, k)
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bx1x23 − cx2x13 + ax3x12 − abc xx123 = 0,

so that the last term vanishes under the limit a = b = c→ 0.
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dKP equation can be obtained from dBKP

x1x23 − x2x13 + x3x12 − xx123 = 0

through a limiting process. The scaling

x(m,n, k) → amnbnkcmkx(m,n, k)

brings dBKP to the form

bx1x23 − cx2x13 + ax3x12 − abc xx123 = 0,

so that the last term vanishes under the limit a = b = c→ 0.

But this changes the combinatorics of equation; two questions should
be answered:

1) which set of equations is consistent?
2) how to define the consistency?



A hint for the question 1) comes from the consistent quadruple of dBKP
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x2x34 − x3x24 + x4x23 − xx234 = 0
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x14x23 − x13x24 + x12x34 − xx1234 = 0

This set of four equations is not independent: one equation becomes a
corollary of the other three. Moreover, the equation on odd/even sublattice
also remains.



(Let us see how these ⇑⇑⇑⇑⇑⇑⇑⇑⇑ ⇓⇓⇓⇓⇓⇓⇓⇓⇓ can be proven. Later on we will see that
this is not just a trick!)

x1x23 − x2x13 + x3x12 = 0
⇑⇑⇑⇑⇑⇑⇑⇑⇑

x12

x1x2
− x13

x1x3
+

x23

x2x3
= 0 ⇐⇐⇐⇐⇐⇐⇐⇐⇐

x1x24 − x2x14 + x4x12 = 0 ⇒⇒⇒⇒⇒⇒⇒⇒⇒
x1x34 − x3x14 + x4x13 = 0
x2x34 − x3x24 + x4x23 = 0 ⇒⇒⇒⇒⇒⇒⇒⇒⇒

x12

x14x24
− x13

x14x34
+

x23

x24x34
= 0 ⇐⇐⇐⇐⇐⇐⇐⇐⇐

⇓⇓⇓⇓⇓⇓⇓⇓⇓
x14x23 − x13x24 + x12x34 = 0

x24

x2x4
− x14

x1x4
+

x12

x1x2
= 0

x34

x3x4
− x14

x1x4
+

x13

x1x3
= 0

x34

x3x4
− x24

x2x4
+

x23

x2x3
= 0

x1

x4x14
− x2

x4x24
+

x12

x14x24
= 0

x1

x4x14
− x3

x4x34
+

x13

x14x34
= 0

x2

x4x24
− x3

x4x34
+

x23

x24x34
= 0



As the answer on the question 2), it is natural to introduce the notion
of consistency in terms of three equations which remain independent. This
is actually a logical step back to 3D-consistency situation.

Definition of consistent triple. Equations

x12 = f(x1, x2, x4, x14, x24),
x13 = g(x1, x3, x4, x14, x34),
x23 = h(x2, x3, x4, x24, x34)

(1)

are called 4D-consistent if the equalities

x123 = f(g, h, x34, T4(g), T4(h)) = g(f, h, x24, T4(f), T4(h))
= h(f, g, x14, T4(f), T4(g))

(2)

hold identically on the initial data

x1, x2, x3, x4, x14, x24, x34, x44, x144, x244, x344.

The role of 4-th coordinate is distinguished,
but the symmetry will be restored soon.
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Remark: a continuous analog

There exist 4D-consistent triples of 3D dispersionless PDE of the form (now,
subscripts denote derivatives)

uxy = f(ux, uy, ut, uxt, uyt),
uxz = g(ux, uz, ut, uxt, uzt),
uyz = h(uy, uz, ut, uyt, uzt).

This means that the cross-derivatives must coincide:

uxyz = Dz(f) = Dy(g) = Dx(h)

where Dx, Dy, Dz are total derivatives in virtue of the system, e.g.

Dx(h) =
∂h

∂uy
f +

∂h

∂uz
g +

∂h

∂ut
uxt +

∂h

∂uyt
Dt(f) +

∂h

∂uzt
Dt(g).

[2] V.E. Adler, A.B. Shabat. Theor. Math. Phys. 153:1 (2007) 1373–1387.

http://dx.doi.org/10.1007/s11232-007-0121-1


The triples look quite similar to the discrete ones, for example the fol-
lowing system is consistent:

(b− a)utuxy − buxuty + auyutx = 0,
(a− c)utuzx − auzutx + cuxutz = 0,
(c− b)utuyz − cuyutz + buzuty = 0.

Moreover, the equation

(a− b)uzuxy + (c− a)uyuxz + (b− c)uxuyz = 0

follows, so that all variables are on equal footing.



From triple to quintuple

Theorem 1. If the triple (1) is consistent then some equations

k(x1, x2, x3, x12, x13, x23) = 0, (3)
l(x12, x13, x14, x23, x24, x34) = 0 (4)

are fulfilled automatically.

Proof. Differentiating the consistency condition (2) and eliminating the
derivatives of composite functions yields

fx1gx3hx2 + fx2gx1hx3 = 0,
fx2gx3hx4 = fx4gx3hx2 + fx2gx4hx3 ,

fx14gx34hx24 + fx24gx14hx34 = 0,
fx24gx34hx4 = fx4gx34hx24 + fx24gx4hx34 .



This is equivalent to the degeneration of Jacobi matrices:

rank

fx1 fx2 0 fx4

gx1 0 gx3 gx4

0 hx2 hx3 hx4

 ≤ 2,

rank

fx14 fx24 0 fx4

gx14 0 gx34 gx4

0 hx24 hx34 hx4

 ≤ 2.

The first condition means that if we solve equations x12 = f , x13 = g
w.r.t. x1, x2, then the substitution into equation x23 = h cancels x3, x4

identically and we come to some equation (4). Analogously, the second
condition implies (3). �

Thus, 4-th direction is actually on equal footing with the other ones.
Moreover, the odd/even sublattices carry an equation of dKP type as well.
The picture becomes completely symmetric if we consider the embedding
Z4 → Z5 accordingly to the rule xi → xi5.



One more example: Desargues configuration

Let

H(a, b, c, d, e, f) =
(a− b)(c− d)(e− f)
(b− c)(d− e)(f − a)

.

Equations

H(xij , xik, xkj , xkl, xjl, xil) = −1,
i, j, k,m ∈ {1, 2, 3, 4, 5}

are consistent.

Geometrically, each equation expresses Menelaus theorem and the whole
consistent quintuple is contained in Desargues configuration.
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[3] B.G. Konopelchenko, W.K. Schief. J. Phys. A 35:29 (2002) 6125–6144.

[4] A.D. King, W.K. Schief. J. Phys. A 36:3 (2003) 785–802.
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Classification theorem

Any 4D-consistent irreducible nonlinear autonomous equations of dKP type
is equivalent, up to nonautonomous point transformations, to one of the
following:

x12x3 + x13x2 + x23x1 = 0 (χ1)

(x13 − x12)x1 + (x12 − x23)x2 + (x23 − x13)x3 = 0 (χ2)

x13 − x12

x1
+
x12 − x23

x2
+
x23 − x13

x3
= 0 (χ′

2)

(x12 − x13)(x23 − x3)(x2 − x1)
(x13 − x23)(x3 − x2)(x1 − x12)

= −1 (χ3)

x13 − x23

x3
= x12

( 1
x2

− 1
x1

)
(χ4)



More precisely, all possible consistent quintuples, up to point transformations
and permutations of indices are:

5 (χ1) (1 ≤ i < j < k < l ≤ 5)

xijxkl − xikxjl + xjkxil = 0;

4(χ2)+(χ3) (i, j, k ∈ {1, 2, 3, 4}):

(xik − xij)xi5 + (xij − xjk)xj5 + (xjk − xik)xk5 = 0,
H(x12, x13, x23, x34, x24, x14) = −1;

4(χ′
2)+(χ3) (i, j, k ∈ {1, 2, 3, 4}):

xik − xij

xi5
+
xij − xjk

xj5
+
xjk − xik

xk5
= 0,

H(x12, x13, x23, x34, x24, x14) = −1;



5(χ3) (i, j, k,m ∈ {1, 2, 3, 4, 5}):

H(xij , xik, xkj , xkm, xjm, xim) = −1;

3(χ4)+2(χ2) (i, j = 1, 2, 3):

xi4 − xj4

x45
= xij

( 1
xj5

− 1
xi5

)
,

x13 − x12

x15
+
x12 − x23

x25
+
x23 − x13

x35
= 0,

x14 − x24

x12
+
x24 − x34

x23
+
x34 − x14

x13
= 0.



Remarks

• We assume that each equation in the consistent quintuple is irre-
ducible. This means that it is not of the form ab = 0 where a and b depend
on incomplete sets of variables.

• We do not assume that equations are polynomial or rational.

• However, we assume that equations are analytic in some domain
and can be be solved with respect to each variable. This eliminates tropical
equations which are piece-wise linear.

• In contrast to 2D case, 3D equations do not contain essential param-
eters. All parameters can be eliminated by nonautonomous point changes,
like the scaling we have used for dKP:

x(m,n, k) → amnbnkcmkx(m,n, k).

Of course, the choice of parameters must be consistent when we consider a
set of five equations rather that a single one. For example, it is not possible
to get all plus signs in all copies of (χ1).



• All equations from the list can be derived from the auxiliary linear
problems like

ψ2 − ψ = u(ψ1 − ψ), ψ3 − ψ = v(ψ1 − ψ)

and are related to each other via difference substitutions. So, our main
result can be reformulated as follows:

The list of 4D consistent dKP type equations is
exhausted by dKP itself and its modifications.

• An example which falls outside the list: equation for the discrete
Laplace invariants (also related to dKP)

(x12 − 1)(x3 − 1) = x2x13(1− x−1
1 )(1− x−1

23 ).

The classification is sketched in the rest of the talk. The main tool is

the three-leg form of equation.



Three-leg forms of Hirota-type equations

A more precise version of Theorem 1 allows to make some statements on
the form of consistent equations.

Theorem 2. If the triple (1) is consistent then it can be cast into the form

a(x1, x4, x14)− b(x2, x4, x24) = p(x12, x14, x24),
c(x3, x4, x34)− a(x1, x4, x14) = q(x13, x14, x34),
b(x2, x4, x24)− c(x3, x4, x34) = r(x23, x24, x34)

and simultaneously into the form

A(x1, x4, x14)−B(x2, x4, x24) = P (x1, x2, x12),
C(x3, x4, x34)−A(x1, x4, x14) = Q(x1, x3, x13),
B(x2, x4, x24)− C(x3, x4, x34) = R(x2, x3, x23).

Obviously, equations (3) and (4) are obtained now by summation.



Due to the symmetry of all coordinates in Z4, several another three-leg
representations exist. It can be proved that

each equation under consideration admits
eight equivalent three-leg representations

so that a consistent quintuple contains in total

40 three-leg representations

which, of course, must be consistent with each other.

Our strategy will be

• first, to analyze the three-leg forms of a single equation;
• next, to assemble these forms into a consistent quintuple.



From consistent quintuple to a single equation

Let us consider just one member of consistent quintuple. In this context,
we associate the variables with the vertices of an octahedron enumerated in
such a way that i and I = 7− i correspond to the opposite vertices.

1

2

3

4

5

6



From consistent quintuple to a single equation
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we associate the variables with the vertices of an octahedron enumerated in
such a way that i and I = 7− i correspond to the opposite vertices.

1

2

3

4

5

6

An intrinsic property of any such equa-
tion is that it can be represented in eight
equivalent forms as follows:

(123) a142 + a263 + a351 = 0
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Let us consider just one member of consistent quintuple. In this context,
we associate the variables with the vertices of an octahedron enumerated in
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such a way that i and I = 7− i correspond to the opposite vertices.

1

2

3

4

5

6

An intrinsic property of any such equa-
tion is that it can be represented in eight
equivalent forms as follows:

(123) a142 + a263 + a351 = 0
(124) a132 + a264 + a451 = 0
(135) a123 + a365 + a541 = 0
(145) a124 + a465 + a531 = 0
(236) a213 + a356 + a642 = 0
(246) a214 + a456 + a632 = 0
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Let us consider just one member of consistent quintuple. In this context,
we associate the variables with the vertices of an octahedron enumerated in
such a way that i and I = 7− i correspond to the opposite vertices.
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(356) a315 + a546 + a623 = 0



From consistent quintuple to a single equation

Let us consider just one member of consistent quintuple. In this context,
we associate the variables with the vertices of an octahedron enumerated in
such a way that i and I = 7− i correspond to the opposite vertices.

1
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An intrinsic property of any such equa-
tion is that it can be represented in eight
equivalent forms as follows:

(123) a142 + a263 + a351 = 0
(124) a132 + a264 + a451 = 0
(135) a123 + a365 + a541 = 0
(145) a124 + a465 + a531 = 0
(236) a213 + a356 + a642 = 0
(246) a214 + a456 + a632 = 0
(356) a315 + a546 + a623 = 0
(456) a415 + a536 + a624 = 0 We call an equation with this

property three-leg equation



Classification of three-leg equations

Is this definition strict enough? Yes, only a finite list of three-leg equations
exist.

Theorem 3. Three-leg equations are exhausted, up to the point changes
xi → Xi(xi) and the numeration of the vertices, by the following ones:

x1x6 + x2x5 + x3x4 = 0, (Y1)
(x1 − x2)x4 + (x2 − x3)x6 + (x3 − x1)x5 = 0, (Y2)
(x1 − x4)(x2 − x6)(x3 − x5)
(x4 − x2)(x6 − x3)(x5 − x1)

= −1, (Y3)

x1x6 = (x2 + x3)−γ(x4 + x5), (Y4)
x1x6 = x2 + x3 + x4 + x5, (Y5)
x1x2x3x4 = x5 + x6, (Y6)
x1 + x2 + x3 + x4 + x5 + x6 = 0. (Y7)



The proof of this theorem is rather lengthy, although quite elementary.
The main role play the identities (subscripts denote derivatives here)

aikj
i + aKJi

i

aKJi
J

=
aiKj

i + akJi
i

akJi
J

,
aikj

j + ajIK
j

ajIK
I

=
aiKj

j + ajIk
j

ajIk
I

which can be easily obtained for any pair of three-leg forms with an edge
(ij) in common:

(ijK) : aikj + ajIK + aKJi = 0,

(ijk) : aiKj + ajIk + akJi = 0.

Notice that each of these equalities contains only 5 variables and therefore
it must hold identically (not in virtue of the equation).



As a corollary, we obtain the identities

aikj
ij a

kJi
J = aiKj

ij aKJi
J , aikj

ij a
jIk
I = aiKj

ij ajIK
I

which allow to reduce the problem to functions depending on two variables.

Statement. The functions aikj and aiKj are of the form

aikj = a(xi, xj)b(xk) + p(xi, xk) + q(xk, xj),

aiKj = a(xi, xj)c(xK) + r(xi, xK) + s(xK , xj).

The further analysis of the identities splits in many branches, but even-
tually it allows to determine all aikj up to point transformations.



From single equation to consistent quintuple

Some combinations of three-leg equations are inconsistent just because the
legs do not match. The following table lists all legs types, up to point
transforms. For example, it implies that an equation of the type (Y1) can
be consistent only with equations of types (Y1) or (Y6).

eq. legs a(x, y, z)

(Y1) xyz

(Y2) y(x+ z), log(x+ y), log
(x+ y

y + z

)
(Y3) log

(x+ y

y + z

)
(Y4) y, xy, log(x+ y), y(x+ z)γ , y(x+ z)1/γ

(Y5) y, (x+ y)z
(Y6) xyz, xy, y, y + log(x+ z), log(x+ y)
(Y7) y



More precise results can be obtained by applying the Theorem 2 which
states that consistent equations can be brought to the form

〈m〉
〈 i〉 [jn, jm,mn] − [kn, km,mn] = [jn, jk, kn]
〈j〉 [kn, km,mn] − [ in, im,mn] = [kn, k i , in]
〈k〉 [ in, im,mn] − [jn, jm,mn] = [ in, i j , jn]

for any permutation (i, j, k,m, n) = σ(1, 2, 3, 4, 5). Here the brackets de-
note functions of three variables x with the corresponding double subscripts.

In particular, this allows to prove that equations of types (Y4) at γ 6= 1,
(Y5) and (Y6) cannot be consistent at all. No quintuple exists which contain
one equation of these types.



In the other cases, we find the form of equations up to 10 arbitrary
functions Xij = Xij(xij), for example the quintuple of equations

H(Xij , Xik, Xkj , Xkm, Xjm, Xim) = −1, i, j, k,m ∈ {1, 2, 3, 4, 5}

possesses the above representation for any functions Xij .

The final step consists of plugging these systems into the second set of
consistent three-leg forms:

Tm〈m〉
Ti〈 i〉 Ti

(
[km, kn, kj ] − [jm, jn, jk] = [km,mn, jm]

)
Tj〈j〉 Tj

(
[ im, in, ik] − [km, kn, k i ] = [ im,mn, km]

)
Tk〈k〉 Tk

(
[jm, jn, j i ] − [ im, in, i j ] = [jm,mn, im]

)
This allows us to fix the functions Xij . It turns out that in all cases these
functions are related with each other via some linear-fractional transform
(or just by scaling, as in case of (χ1)). Moreover, all coefficients can be
killed by the use of nonautonomous point changes and finally we come to
the classification theorem.


