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*We develop a bosonization approach for finding magnetic
susceptibility of 1D attractive two component Fermi gas
at the onset of magnetization taking into account

the curvature effects.

It 1s shown that the curvature of free dispersion at

Fermi points couples the spin and charge modes and

leads to a linear critical behavior and finite susceptibility
for a wide range of models.

Effect of curvature on correlations functions is investigated



*Bosonization approach
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*Spin — Charge separation
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*The Hubbard model
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Luther-Emery point
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weakly interacting massive Thirring fermions.

*Bogolubov transformation:
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*Magnetic field. C-IC transition
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This is a consequence of the fact that solitons
appearing in the spin sector above the criti-
cal field h. behave themselves as free fermions.
They have a quadratic dispersion, and the soli-
ton density is proportional to the magnetiza-
tion m. The Kinetic energy of solitons is thus
proportional to m3 and minimization of their
total energy E ~ [—(h — he)m 4+ const x m3] in
the field h > he gives the square root depen-

dence m ~ +/h — he



*Nonlinearity of fermion spectrum
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*Repulsive case : U >0

w2 H(o) = <(0,0)° + gﬂg.

*Spin excitations current
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«Strong coupling limit
v 1
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At the critical field hqe = 224, where 2A is
equal to the binding energy of the pairs, the
low-momentum dispersion relation for spin-7
fermions is E; (k) = \/1;%;32 + A2-A ~02k? /24,
with U1 being their velocity. The bound pairs
disperse linearly with velocity v, # 0. Magne-
tization density is expressed as follows:
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At a fixed p the fields Oz¢p, 00p and 8$¢Ta8$9T
are decoupled and we have sine-Gordon like
square root dependence of magnetization on

the field m ~ \/h — h¢r, fOr h — her + 0.

O At a constant number of particles we have a
constraint (M) =0,,— x = 0m/0h|,,.,. = 1/mvp

For strong coupling Hubbard model (—-U > t)
the Bethe Ansatz inverse susceptibility is given
by x 1(|U| — o) = 272v(1 — v)2/|U| (Woy-
narovich91), which at a low filling factor v
tends to our strong coupling result , with v, =
2mv/|U|.



*Spin gap case ( U < 0 Hubbard model)
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For finding the susceptibility at a given number
of particles we have to impose a constraint:
(Ordc) = 0, which allows us to integrate out
the charge modes. We calculate the ground
state energy at the onset of magnetization,
confining ourselves to the terms proportional
to m2. For extracting these terms we write:
Orts =:0x0s: ++v/2mm. This ammounts to sep-
aration of dy¢s into its mean part and fluc-
tuations at A > he. Then, after integrating
out charge degrees of freedom, the Euclidean
action is S.ff = S9 + Sk, where:
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and it does not give rise to an m?2 contribution
in the ground state energy (Japaridze,Nersesyan;Pokrovski, Talapov)



Retaining only contributions proportional to m2,

the term Sk originating from the spin-charge
interaction is given by:

Ym2k2r2 (1T | |
Sw=— ] Y [02,,Ge(x,¥) : Or,6a(x): Dy6a(y):
F  1,j=0,1

_ E:?iyj(?c(x, Y) 105;05(X) 11 0y, 05(y) :] dxdy.
Here x = {z,7} = {zg,71}, and y = {y,7'} =
{vo,y1}, and the propagator for the charge sec-
tor is Ge(x,y) = —K¢/4nIn((z — y)2/a? + (7 —
)2 /a?+1), where a is a short distance cut-off.



*Using Eucidean invariance and explicit forms of Green functions:
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m?2 contribution to the energy can be obtained

:> by using a simplified effective action:
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<]:{> *Renormalization of the Luttinger parameter of spin sector:
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Ep Is the ground state energy of the sine- Gor-
don model.



For Ks — 1 we follow the RG results (Amit,
Kosterlitz) — in the one-loop approximation
Eo = —A\A?/up, where A is the soliton mass
(gap in the excitation spectrum), and A > 0O
which wel fix later for the SU(2) symmetric
sine- Gordon case.
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In the vicinity of the SU(2) separatrix of the

sine- Gordon RG flow
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The same result is valid in the vicinity of the
Luther-Emery point Ks — 1/2. By mapping
the spin sector onto free massive fermions —
x 1 x k20& /0K s x K2 <(5t¢s)2/“12:* - (3x¢’8)2> X
(kA InA/EpR)2.

In the case of the Hubbard model with at-

tractive interaction U < 0O, one has 1 — Kg ~

|U|/27vE and this result is similar to the Bethe

Ansatz calculation in the weak coupling limit

(Woynarovich): x 1(|U — 0) = 8r27n3 A2 /vpU?2.
This implies that the factor A is equal to 3/2«

on the SU(2) line.



*Correlation functions
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and vy, K4 are the Bethe Ansatz velocities and Lut-
tinger parameters for the + sectors. For m — () we have
v_ocm — 0, K_ — 1/2 at any U and v~ [24]. In the
case of half filling (r = 1) one has K, =1, £ = 0 for
all |U7|, and there is an exact spin-charge separation so
that the fields ¢4, 0, coincide with ¢, .,0. .. Forv <1
one has
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The limit of m — 0 allows us to derive analytical
expressions for the critical exponents of the correlation
functions and make a number of physical conclusions.
For the pair correlation function from Eq. (14) we ob-
tain:
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whereas for h < h,,. it is ~ 2= YE+_ There is a universal
jump of 0.5 in the critical exponent, the result that is
expected from the theory based on spin-charge separa-
tion. However, for the single fermion Green function we

find:
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‘T he critical exponents:
v =1/2+ Ky /4+ (1+6)?/8+ (1 —€)?/4K

. vy < v even in the limit of m — 0, which is
a clear signature of spin-charge coupling.




Conclusions

We develop a bosonization approach for finding magnetic
susceptibility of 1D attractive two component Fermi gas at the onset
of magnetization taking into account the curvature effects. It is shown
that the curvature of free dispersion at Fermi points couples the spin
and charge modes and leads to a linear critical behavior and finite
susceptibility for a wide range of models.

The curvature couples spin and charge modes for $m\to 0$ and

changes critical properties of 1D spin gapped fermions at the onset
of magnetization.



