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We consider 3D-systems of the form

n

n n
> agi(W)ujs+ Y bW ujy + Y c(a)uj, =0,

where 1 = 1,...,[. Here [ > n,

u = (’U/]_, ...,Un)t.
Integer Kk =1 — n is called the defect of the system.
Equations of the form
A1Zy + ApZyy + A3Zyt + AaZyy + AsZzy + AgZzz = 0
where A; = A;(Zx, Zy, Z), correspond to n = 3,1 = 4.
Equations

F(Ztta Lat, Zyta Zyya Za:y7 Zxx) =0

correspond to n =5, = 8.



Part 1. Gibbons-Tsarev type systems

The GT-systems play a crucial role in the approach to
integrability based on the hydrodynamic reductions.

Definition. A compatible system of PDEs of the form
azpj — f(pi,pj,u]_,---,un) a’iul ) Z#J) 1,] = 1,..., N,
aiuk — gk(pi7u17 ,Un> a’iula k= 27 ey Ty 1= 17 "'7N7

a?,a]ul — h(piapjau]_) ,’U,n) a’iulajula v # J, 4,3 =1,..,N

is called n-fields GT-system. Here p1,....,pN, U1, ..., Un

are functions of r1,...,#rN, N >3 and 9, = %.
,’a'L

Definition. Two GT-systems are called equivalent if
they are related by a transformation of the form

p’i_>>‘(pi7u17'”7un)7 7’: 17"‘7N7 (1)

up, — pp(ug,...,un), Ek=1,.. n. (2)



Example 1. The system

O;p; = 0O, Oiu, = gr(p;)O;u1, 0;0ju1 =0 (3)
is a n-field GT-system for any n, N and any functions
gr(z).
Example 2. Let P(x) = a3:1:3—|-a2:132—|—a1:1:-|—a,o. Then

_ Ko(pispj)u? 4+ K1(pi, pj)u + Ko(p;, pj)

O;iu = o;ud;u,
Y P(u)(pi — pj)? B
P(p;)(u — p;) o o
op; = J ouw, 1,7=1,...,.N, 1% 7,
S Pu)(pi—pp)
where

Ka(pi,p;) = 2a3(p; — p;)?,
K1(pi,pj) = —as(pgpj-l-pz'p?)+a2(pz'2+p]2'—4pipj)—@1(pq;-l-pj)—an,

Ko(pi,pj) = 2a3p2p2+ax(p?p;+pip?)+a1(pZ+p?)+ao(pi+p;)

IS an one-field G T-system.



Using transformations of the form

au + b \ ap; + b

cu—+d’ bi cpi—l—d’

one can put the polynomial P to one of the canonical
forms: P(x) =xz(x—1), P(x) =z, or P(x) = 1.

u —

Suppose we have an one-field GT system
We can add one field more to the system as follows:

87;’0 — f(p?,7 v, u) a’Lu

We call this procedure regular field extension.



Example 3. Let

0(z,7) = Z( 1)% 2mi( oz 882

aEZ

(—) 0
Do )=

T hen

1
Oapg = Q—M(p(pa —pg) — P(Pa))0aT,

1
804(957' — —ﬂ_—ip/(pa — pﬁ)ﬁoﬂ'@ﬁﬂ

where o,8 = 1,....N, «o # (3, is an one-field GT-
system. Regular extensions give rise to

1
Oaug = Q—M(p(pa —ug) — p(Pa))OaT, B=1,..n.



Another basic notion of the hydrodynamic reduction
approach is the generating relation for reductions:

OFj)  _  9G(p;)
F(p;) — F(p;) G(p;) — G(pj)
Here we omit arguments uq,...,un in F, G.

(4)

The derivatives in (14) supposed to be calculated in
virtue of the G T-system.

For Example 2 with P(x) = x(x—1) there are following
n-field solutions (F,G):



Consider the following system of linear PDEs:

2, ~ h h
0 — SJ 8 _I_ 7k 8 3 Z)]: 17...,77/7
and
52h nt2 s
=— |1+ 2 sk ! h—+

S "ou — 1) Oh
J 5 k(ug —1) n

ui(u; — 1) hj Wk~ U oup

i Sk + Sj —|— Sn+1 —|— Sj —|— Sn4-2 . Oh

j# k,



It is easy to show that the vector space ‘H of all
solutions is n 4+ 1-dimensional.

For any h € 'H we put

1<i<n

14+ > sp)p—u1)...(p—un)h
1<i<n+2

This is a polynomial of degree n.

Proposition. Let hq,ho,hy are linearly independent
elements of H. Then

F = S(hlap) — S(h27p)
S(h3z,p)’ S(h3,p)
satisfy the defining relation for reductions.

G




In the elliptic case

_ 0(ua)f(p — ua — 1) _
Sh.p) = 13%?372 0(ua +1)0(p — Uoz)hua

6'(0)6(p —m)

0(n)0(p)
Here n = sqyu1+... +spun+r7-+mng, where sq, ..., sn,7,7M0
are arbitrary constants and h(u1,...,un,7) iS a solution
of the following elliptic hypergeometric system:

(s1+ ...+ sn)




hua% — Sﬂ(P(uﬁ —ua) + p(ua+mn) — P(’Uﬁ) — p(1n))hug+
sa(p(ua —ug) + p(ug +n) — p(ua) — p(n))hug

huaua = sa ), (p(ua)+p(n)—p(ua—ug)—p(ug+n))huyz+
f#a

( Z Sﬁp(uoz - Uﬁ) + (sa + 1)p(ua + n)+
f7a

sap(—n) + (so — sa — 1)p(ua) + 2mir)hy,—

s0sa(p’ (ua) — p' (M)A,

hr = Qi > (p(ug +m) — p(n))hug — %p’(n)h-
7T B 7T



Given GT-system and a solution (F,G) of the defining
relation for reduction, one can easily construct an
integrable system of the form
n n n
Y aiiwuj 4 D bji(w)uj, + > ¢i(u)u,, =0,
J=1 J=1 J=1
where 1 = 1,...,1. Here [ > n,

u= (u,...,un)’

Integer Kk =1 — n is called the defect of the system.

T he coefficients are defined by relations:

> (aj(W)F(p,u1, .y un) + bij(W)G(p, uy, ..., un)+
j=1

Cij(u))gj(paula ,Un) = 0, 1 =1,..,1,

where by definition g1 = 1.



Namely, consider the linear space V of functions in p
generated by

{F(p7 Uy -y un)gj(p,ul, ...,Un),
G(p7 uiy, ,Un)gj(p, U, - un))

gi(p,u1,...,un); j=1,...,n}

Then the system contains of [ equations iff V' is
(3n — 1)-dimensional.



Part 2. Weakly nonlinear systems

For the generic GT-systems the functions f,h have
poles at p;, = pj- However, there exist GT-systems
holomorphic at p; = p;.

We call integrable 3D-system related to a GT-system
holomorphic at p; = p; weakly nonlinear. 1t is possible
to check that if ] = n then any 2D-system that describe
travel wave solutions

u = u(kix + koy + kst, kax + ksy + ket)

for weakly nonlinear 3D-system is a weakly nonlinear
2D-system.



Example. Consider the following 3D-system (Ferapontov,
Khusnutdinova):

’Ut‘|‘a’U:c‘|‘p'Uy‘|‘qu:O> ’UJt"—b’lU;C—I—?“’Uy—'—S’UJy:O,

where

) 2P W), =T ),

P(w) _ P(v)
w — ’07 4= vV — w'
Here P is arbitrary polynomial of third degree.

T =



The corresponding GT-system is given by

O1p2 = (w ff}’;u;(v) p5p1 + (w 1_ o Zé:;) p2p1—
1 P'(w) B P(v)
(’U —w + P(w)) = (v —w)P(w)’
01v = p1 O1w,
010w = <(U _PS)UI)D(U) p1p2 + L + ];((Z))> JLworw.



It is possible to verify that this G T-system is equivalent
to

O;ip; = 0O, Ojup = go2(p;)O;uq, 0;0ju1 = O,

where

aop? + a1p + ag
bop? + bip + bo

g2(p) =

Example. The dispersionless Hirota equation

a1 ZgZyt+apZyZipt + a3 L gy = 0, a1 +a>+a3 =0

corresponds to a holomorphic GT-system.



Fix pairwise distinct numbers Ag, A1, ..., A\n. Consider
the following n41-field G T-system with fields uq, ..., un, w.

RV,

az'pj — O, &;uj — D, — X &L-u, 828]11, = 0. (5)
¢ J

For any constant a = (ag, a1, ...,an) we put

n

ao a e
S(a,p) = + :
P — Ao z; p— A

Proposition. The functions

& _ SCai,p) _ S(az,p)
S(az,p)’ S(az,p)
satisfy the defining relation for reductions.

G




The corresponding 3D-systems have the form:

'uiatl o uj7t1
Z (&2’7:&3’]' o a,2,ja,3’i>€u] >\ _ >\ +
1<j<n,ji i
Ui tq
(an;a30 — a3,ia2,o)ﬁ+
i — Ao
'uiatQ o uj7t2
Z (&3’7:&1’]' o a37ja17i>€u] )\ _ >\ —I_
1<j<n,ji i
Uity
(a3 ;010 — al,z'a?),O)ﬁ‘l'
i — Ao
U p — Ujx
Z (a/la?’a/25] R allaja/27i)euj )\ >\ —I_
1<j<n,j£i i A
Ug
(a14a20 — a2;a1,0) =0

Ai—Xo
where 1 =1, ..., n.



Proposition. This system possesses the following
pseudopotential representation

_ S(a1,¢)
"ébtl — S(a3’£)¢337 %2

where £ is a spectral parameter.

_ S(a2,§)
5(8.3, g)

wiﬁa



Equations of the form
A1Zy + ApZyt + A3Zyt + AaZyy + AsZzy + AgZzz = 0
where A; = A;(Zx, Zy, Zt), correspond to n = 3,1 = 4.

Equations
F(Zt, Zgt, Zuyt, Zyy, Zzy, Lzz) = 0

correspond to n =5, = 8.



Definition. An (14+1)-dimensional hydrodynamic type
system of the form

r;fl = )\i(rl, ,..’TN) r;) i=1,...,N, (6)

is called semi-Hamiltonian if the following relation
holds
ONE aj)\k . .
i 3k g 1 F J Fk, (7)
Recall that semi-Hamiltonian systems have infinitly
many symmetries and conservation laws of hydrodynamic

type.



Definition. A hydrodynamic reduction of the 3D-
system is a pair of compatible semi-Hamiltonian hydrodynamic
type systems

r;f: =\t ) 7“23, r?z = u'(rt, . rY) 7“3;., i=1,...N,
(8)
and functions vy (rl, ....rN), .., on(rl, ..., rN) such that

for each solution of (8) functions
N),...,unzvn(rl,...,'rN) (9)

are solutions of the 3D-system.

—_ 1
uy =v1(r,...,r

According to [?] a system (?7?) is called integrable if
it possess sufficiently many hydrodynamic reductions.
Namely, substitute (9) into (?7?), use (8) and equate
coefficients at rl to zero. We obtain

n n n
N ai; (V) 9N+ ST bii(v) Qo'+ Y ¢ (v) dpv; = 0,
J=1 J=1 J=1

(10)
For each fixed [ this is the same linear overdetermined
system for Qvy,...,0vn. This linear system must have

&
|
\.I—‘



non-zero solution so all its n X n mMinors must be
equal to zero. These minors are polynomials in A, !
independent on [. We assume that these system of
polynomial equations is equivalent to one equation

POL ) =0 (11)

(othewise A\, ! are fixed and we don’t have sufficiently
many reductions). Equation (11) defines the so-called
disspersion curve. Let p be a coondinate on this curve.
Then (11) is equivalent to equations

)‘l — F(pl,?)]_, ...,Un), Ml — G(pl,?)]_, "-7?)77,)

for some functions F, G. Assume that for generic p;
the linear system (10) has one solution up to proportionality.
Solving this system we obtain

;v = gr.(p;, v1, ..., vn) O;v1, k=2,...n,1=1,...,N,
(12)
for some functions g;.. Rewrite (8) in the form

rt = F(p;,v1, ..., on)Ts, fr; = G(p;, V1, -, Un)TL, i=1,.., N,
(13)



and note that compatibility condition reads
OiF(pj)  _  9iG(p;)
F(p;) — F(p;) G(p;) — G(pj)
Here we omit arguments vq,...,vn in F, G. From (14)
we can find 9;p; in the form

(14)

azp] — f(pi7pjvvla "'7'077/) 87;,01 ) 7’7'_& ja 7’7] — 17"'7N‘

Finally, compatibility condition 87;8jvk — 83-87;% for some
k gives

aiajv]. — h(pi,pj,’l)]_, ...,Un) ai’U]_aj’U]_, v 74: J, 43 =1,.., N.

Collecting these equations together we obtain a system
of the form (?7). Hydrodynamic reductions of (77)
depend on solution of this system (??7). We want
to have as many reductions as possible, therefore
we assume that the system (?7) is compatible. In
this case hydrodinamic reduction locally depends on
N funktions in one variable.



Integrable 3D-systems related to
the generalized hypergeometric functions

We construct new wide classes of pseudopotentials
written in the following parametric form:

q)y:Fl(pvu)? (Dt:FQ(p,ll), ¢$:F3(p7u),

where u = (uq, ..., un) and the p-dependence of functions
F; is defined by the ODE

Fip=¢ip,u) "1 (p—1)""2(p—u1) "3...(p — up) ™ "n+2

Here sq,...,s,42 are arbitrary constants and ¢; are
some polynomials in p of degree n — k.

We call them pseudopotentials of defect k.



for unknown function h(uq,...,un). If n = 1, then this
system coincides with the standard hypergeometric
equation

u(u—1)y(u)" + [(a+ B8+ 1) u—]y(u) + aBy(u) =0,

where s1 = —a, so=a—v, s3=~v— 0 — 1.

Proposition 1. This system is compatible for any
constants si,...,s8,42. The dimension of the linear
space ‘H of solutions of the system equals n + 1.



Define function P(g,() by
_ S o —s1—1 . —sn—1
P(g,¢) = A S(g,p)(p — u1) (P — un) X

pSnt17l(p — 1) 7St gy,

Let g0,91,92 € 'H be linear independent.

Theorem. The compatibility conditions Cbtitj = Cbtjtz-
for the system

Cbta :P(gth)) CMZO,].,Q (15)

are equivalent to a system of PDEs for uq,...,un Of
the form:

n

> aii(Wuje, + Y bii(a)uj, + D cij(w) uj, =0,

=1 =1 =1
where 1 = 1,...,n, and tg = x.



The explicit form of this system is given by

wj(uj — 1u; o — ui(u; — 1)uj,t0_|_

Z((gl,ujQQ,ui_QQ,Ujgl,ui) oy
% A

(L4514 ..+ sp42)(9192,u; — 9291,u;)Uj o+

)uj(uj — D¢y — ui(u; — 1)u;

,t

i3] A

(I +s1+ ..+ sp42)(9290,u; — 9092,u,;) )t +

]7t2+

wi(u; — 1)u; p, — ui(u; — 1)u;
Z ((Qo,ujgl,ui_gl,ujgo,ui) o ' 2 '
i3] A

(1 +s1+ ..+ sp42)(9091,u; — 9190,u;) 5, = O.



Pseudopotentials of defect £ >0

To define pseudopotentials of defect k£, we fix k linearly
independent generalized hypergeometric functions hq, ..., hi €
H. For any g € H define Si(g,p) by

Sop) =5 2 wui— D) ur) x i
1<i<n—k+1
X(P— Up_k+1)0:(9).
Here
[ he )
A et | Pl iss o PR




Ju; hl,ui hk,ui

A;(g) =det | Gu,_pio hiu,

N T

It is clear that S, (g,p) is a polynomial in p of degree
n — k.

Example 3. In the simplest case n = 2, £k = 1 we
have

gh1uy — guiha
hi

S1(g,p) = u1(uy — 1)(p — u2) +

gh1 us, — gushi

up(up — 1)(p — uq) e



Define the function P.(g,p) by
p - — — —
Pr(g,p) :/O Sr(g,p)(p—u1) "1 1...(p—un_k_|_1) Sp—k+1—1

X (P—py_ oy 2) " RH2 (p—un) "5p T ST (p—1) TS +2" Adp.

Theorem. The compatibility conditions (Dtitj = d>tjtz.
for the system

(Dta :Pk(gaap)a Ot:O,].,Q (16)

are equivalent to the following system of PDEs for
uq, ..., un OF the defect k:



Z (Aj(gq)Ai(gr) — Aj(gr)Ai(Qq))
1<i<n—k,i#j

Xuj(uj — Dy g, — ui(u; — 1)uj,t3_|_
Us — Uyg

Z (Aj(gr)Ai(gs) — Aj(gs)Ai(gr))
1<i<n—k,i#j

wi(u; — D)ug g, — ui(u; — 1)uj,tq_|_

uj—uz-

X

> (A;(g9s)Di(gq) — A j(gq)Di(gs))
1<i<n—k,i%]

wj(uj — gy, —ui(u; — Dujy,
X =0,
’UJ] — Uy

where 3 =1,....,n— k and

n—k+1 n—k+1
Z Az’(gr)uz’,ts — Z Ai(gs)ui,tra
1=1 1=1



Z Az‘(gr)um(um )uz ts uz(uz )um,ts

n-krl um(um — 1)“2 e uz(ui — 1)Um ty

Z A’L(QS) : ’
1=1

where m=n—k—+2,....,n. Here g,r,s run from O to n
and tg = .



Example 4. In the case n = 3, £k = 1 the formulas
can be rewritten as follows. Let hq, g0, 91,92 be linearly
independent elements of H. Denote by B;; the cofactors

of the matrix

h1 90 91 g2
hl,ul 90,u1 91uq 91,uq
hl,uQ 90,ur 9lur 91,uq
hius 9ous 9luz 91,u3

Define vector fields V; by

0 8, 0
Vi = Boo— + Bog — + Bog —,
1 22 Bt + B3 9t + Bog 9t
0 0 0
Vo = B3» — + B33z — + Bzgq —,
2 32 Bt + B33 ot + B34 9t
0 0 0

Va3 = Bso—+ Bgz— + Bag—.
3 428to+ 438t1+ 44 50



Then the set of equations is equivalent to

Vi(uz) = Va(uy), Va(uz) = Va(uz), Vz(ui) = Vi(uz).

and
uz(u3z — 1)(ug —u2)Vi(uz) +ug(ug —1)(up —u3)Vo(us)

+uo(uz — 1)(uz —uy1)V3(uy) = 0.

There exist conservation laws of the form

(). = (&)
hi/y, hi/y,

Introducing z such that z;. = 5—3' we reduce the system
to a quasi-linear equation of the form

Zpi,j(ztoa Zt1 ztz) Zti,tj — 07 ’L,] — On 17 2. (17)
@]



In the paper by E. Feropontov an inexplicit description
of all integrable equations (17) was proposed. The
equation constructed above corresponds to the generic
case in this classification. Indeed, it depends on five
essential parameters sq,...,s5 which agrees with the
results of this paper.



Integrable elliptic pseudopotentials

If

d; = A(p,u), $, = B(p,u), where p= &P,

IS a pseudopotential representation for some integrable

3D-system, then for any p € C the point (él%’p,Ap)

pp
belongs to an algebraic curve of genus g, whose coefficients
depend on u.

Now we construct pseudopotentials and integrable systems
related to the elliptic curve. For these systems u =
(ui,...,un,7), Where 7 is the parameter of the elliptic
curve also being an unknown function in the system.



T he coefficients of the systems are expressed in terms
of the following elliptic generalization of hypergeometric
functions in several variables:

Juaug = sp(p(ug — ua) + p(ua +n) — p(ug) — p(n))gua+
sa(p(ua —ug) + p(ug +n) — p(ua) — p(n))gug,

Juaua = Sa Y, (p(ua)+p(n)—p(ua—ug)—p(ug+n))gus+
f#a

( Z Sﬁp(ua - Uﬁ) + (sa + 1)p(ua + 1)+
Ba

sap(—n) + (so — sa — 1)p(ua) + 27ir) gu,—

sosa(p'(ua) — p'(n))g,
gr = Qi > (plug +n) — p(1))gus — %p’(n)g
7T 6 7T

for a single function g(uy,...,un, 7).



Here n = syu1+...+spun+r7+n9, Sg= —81—...—Sn,
where s1,...,8n,7,m9 are arbitrary constants, and

_0'(2)

( 2—1)7_)

0(z) = Z (-1

aEZ
We omit the second argument 7 of the functions 0, p
and use the notation

9 =2y =2 ey =P g =

It turns out that the dimension of the space of solutions
for the system equals n + 1.

00(z)
or




Describe pseudopotentials of defect kK = O related to
the elliptic hypergeometric functions. The pseudopotential
An(p,uq,...,un,7) is defined in a parametric form by

An = Pr(91,p), p = Pn(90,p),

where g1, go be linearly independent elliptic hypergeometric
functions

D :
Pn(g,p) = /O Sn(g, p)e2™r(TP)

0/(0)—81—...—Sn6(u1)81.“Q(Un)sn

0(p) 517 —n0(p — u1)51...0(p — un)Sndp’
and
_ 9(“@)9(]9 — Uy — 77) B
Sn(g7p) - 1§20;§n e(ua _I_ 7’])9(}? . u@)gua
(s1+ ...+ Sn)e’(O)H(p _ ”)g.

0(n)0(p)
We call them elliptic pseudopotential of defect O.



Some important examples of pseudopotentials A, B
related to the Whitham averaging procedure for integrable
dispersion PDEs, to the Frobenious manifolds, and to
the WDVV-associativity equation were found by B.
Dubrovin and I. Krichever.

In the case s = ... = sp, = r = 0, ng — 0 our
pseudopotentials coincide with elliptic pseudopotentials
constructed by Dubrovin and Krichever.



Our goal now is to describe " integrable” pseudopotentials
A =¢(p,u).

Consider the simplest one-field case: A = ¢ (p,u). The
Benney hierarchy provides the following two examples

p2
zng—l—u, and ¥ = log(p — u).

One explicit example more:

P = \/U(p2+01)-|-62-



Integrable pseudopotentials in the one-field case

"Integrable” pseudopotentials ¥ (u,p) are given by

_ QW) e _ B(p)

Ypp v, QYp)
where R and (@ are polynomials in 1, such that
degR < 3, deg@ < 4. In the generic case (18) implies

Yu (18)

k k
Cop . _F1 4 4 ke (19)
¢bp ﬁ@‘—bl ¢T‘—b4
b; = (1 —k;j)a [] (b; — b)), i=1,...,4, (20)
JF1
where k; are any constants such that k1 +... + kg4 = 3,
and b, = b;(u). The function a(u) can be chosen

arbitrarily due to the admissible transformations v —

s(u).



Let us choose
1 1

a = + .
(b —b3)(b1 —bsg) (b1 —b2)(b3 — ba)
Then the general solution of (20) is given by

Z2 + uyo Y2 _ 2Ty __ 2
) b2__7 b3_—7 b4__7
z1 + uy1 Y1 z1 + Y1 21
where y;(u) are two arbitrary solutions of the gypergeometric

equation

u(u—1)y(w)" +[(a+ B+ 1) u—~]y(w) +aBy(u) =0,

where ki =14a—7v, ko =1—a, k3=~ — 03, and
uw(u — 1) /

ki 4 ko +ka—2°°0

by =

2 = —uy; +



System (18) can be reduced to quadratures as follows.
Determine ¢(u,p) as the solution of the system:

oy — OO~ 1)} 5, — "1 (¢ — u)2(p — 1)"3

u — 9 - .
B(y1¢ + z1) P y1¢ + 21

Then the solution of the following system in involution

Yoyl — Y195

T ot (p —u) R (¢ — 1)1,
by = Yod + 2o
P i+ 21

is a general solution of (18).



Definition of integrability

Consider the dispersionless Lax equation

Li = {¢, L} (21)

Suppose there exists a hydrodynamic-type system
rt = o' (r)r, i=1,2,...,N, (22)

and functions v = u(r) and L = L(r,p) such that
these functions satisfy (21) for any solution r(x,t) of
(26). Then (26) is called a hydrodynamic reduction
for (21).

The pseudopotential ¥ (u, p) is called integrable if (21)

has "many’ hydrodynamic reductions with arbitrary
N.



Example. Let us show that ¢ = In(p—u) is integrable.
Let w(rl, ..., 7)), p;(r,....7N), i =1,..., N be an arbitrary
solution of the following system

0w 20, w0;w , . .
ajpzz%7 8Z]w: _Z_ ]. > J=1,..,N, Z#]
Pj — D (p; pj)
Here 0, = %. T his system is in involution and therefore

its solution depends on 2N functions of one variable.



Define a function L(p,r1,....r) by
__ Owlp

p—Di
The system (23) defines the function L uniquely up
to unessential transformations L — A(L).

;L i=1,.. N. (23)

Let u(rl,....7V) be a solution of the system

8.
pi — u

Proposition. The system

. 1 .
Ty = Ty, (25)
pi — u

is a hydrodynamic reduction of (21). &




Let us introduce the following notation:

Ji= Yo Jij Yulr=r, P 7 ]

Vplp=p; — ¥p Vplp=p; — VYplp=p;

Theorem. For any integrable pseudopotential ¥ (u, p)
the following functional equation

o <f12 Opsfo — f210p  f1 + Ou(fo — f1) + f1Opf2 — fo 3pf1>
J1— /2

=0

holds.

T he pseudopotentials described above correspond to
the generic solution of this functional equation.



Integrable 2D-systems

The hydrodynamic reductions of our pseudopotentials
of defect O are integrable systems of the form

ri =o'(rt, . ) i=1,2,..,N. (26)

€T

The velocities v* are defined by an universal overdetermined
compatible system of PDEs of the form

o, = P! (pj — 1) Biw, Oy = PP~ Pi—Dj

Pi — Dj (pi — pj)?

8z-w 8jw

for some functions w(rl, ..., rN), p;(rL, ..., rN). Here i, j =
1,....N,i+#j.



Define functions u; by the following system of PDEs

u:(u; — 1)o;w
Oju; = j(uj = 1O, ., i=1,..N, 4j=1,..,n.
Di — Uj

Then our integrable 2D-systems are given by

r% _ S(glapi)ri
3(927pz) v

where g1,g9> € 'H.

For some very special values of parameters s; these
systems are related to the Whitham hierarchies, to
the Frobenious manifolds, and to the associativity
equation.



Canonical series of conservation laws

The transformation L(x,t,p) — p(x,t, L) reduces
Lt — {% L}
to the following conservative form

pt = YU, p)z. (27)

Here L plays a role of parameter. If we substitute any
expansion of p w.r.t. L into (27), we get an infinite
sequence of conservation laws.

For the pseudopotentials above constructed we get

Pn(h27 C)t — Pn(hla C)Zlfv

where
(=ag+ a1l +axL?+ ...



Definition. Two integrable pseudopotentials ¥, 9o
are called compatible if the system

Ltl — {Lﬂbl}, LtQ — {L7¢2}

possesses sufficiently many compatible pairs of hydrodynamic
reductions

Ter Tt = o5(rt, ..., V)7

T — 1 (1
Ttl—’l)]_(’l" gy eeey T’ T

for each N € N.

If 1, Yo are compatible, then ¥ = ciy¥1 4+ coyo is
integrable for all constants cq, c»o.

Example. The pseudopotentials ¥1 = In(p — u71) and
> = In(p — un) are compatible. Moreover,

v=ciIn(p—uy)+ ..+ cnin(p —up)

is integrable for each constants cq,...,cn.



Proposition. Let hq, ho, hg € ‘H are linear independent.
Then pseudopotentials

¢1 — Pn(hla C)7 ¢2 — Pn(h'27 C)a p = Pn(h37 C)

are compatible.

Proposition. The compatibility conditions for the
system

Ltl — {Lﬂbl}, LtQ — {L7¢2}

are equivalent to a quasilinear system of PDEs of the
form

n

n n
> aij(uje, + D bij(a)uje, + ) cj(@) uje, =0,

=1 J=1 =1
where 1 = 1,...,n.



