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1 Introduction

In this talk we will discuss statistical properties of integrable wave systems. To

make the formulation of the problem clear, we start with the focusing Nonlinear

Schrodinger equation:

iΨt + Ψxx + |Ψ|2 Ψ = 0, ∞ < x <∞ (1.1)

Equation (1.1) is well studied in two cases:

1. |Ψ| → 0, x→∞
In this case the classical Inverse Scattering Method is applicable.

2. Ψ is a quasiperiodic function and the corresponding Lax operator L has

only finite number of lacunaes. In this case the solution is formulated in terms of

Riemann functions on a certain hyperelliptic algebraic curve.

The connection between these two approaches is not properly traced so far. Let

us go outside these two frameworks and assume that in the initial moment of time

t = 0, function Ψ = Ψ0(x) is a representative of a certain spatially homogeneous

random field such that the correlation function

< Ψ0(x) Ψ∗(λ + ξ) >= F (ξ) (1.2)

do exist. It means that we define a certain probabilistic measure on the class

of bounded smooth complex functions Ψ(x). If such measure is fixed, it does not

depend on time. For a generic choice of measure, function F (ξ) will change in
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time, ”adjusting” itself to a given measure. But we can try to choose the measure

by such a special way, that F (ξ) is invariant in time, and for any value of t get

< Ψ(x, t) Ψ∗(x + ξ, t) >= F (ξ),
dF

dt
= 0 (1.3)

Such measure is called invariant. Can we do this and how?

Let us reformulate the question in terms of Fourier transforms. Let

Ψ(x, t) =
∫ ∞
−∞ Ψ(k, t) ei k x dk (1.4)

For any homogeneous random field

< Ψ(k, t) Ψ∗(k′, t) >= N(k, t) δ(k − k′) (1.5)

In the initial moment of time

< Ψ0(k) Ψ∗0(k′) >= N0(k) δ(k − k′) (1.6)

Let us note that

F (ξ) =
∫ ∞
−∞ N(k) ei k ξ dk

Brackets in (1.3)-(1.5) mean averaging over the measure. Can we choose it

such that N(k, t) = N0(k)? To approach to the solution of this problem, first we

consider the linearized Schrodinger equation

iΨt + Ψxx = 0 (1.7)
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In this case, existence of invariant measure for any F (ξ) is an obvious fact.

This measure is Gaussian. It means that all higher correlation functions can be

expressed through a special density N(k). For any homogeneous random field

< Ψ∗(k) Ψ∗(k1) Ψ(k2) Ψ(k3) >=

= NkNk1 (δk−k2 δk1−k3 + δk−k3 δk1−k2) + Ikk1k2k3 δk+k1−k2−k3 (1.8)

Here Ikk1k2k3 is a cumulant. For a Gaussian field the cumulant is zero. It is

clear that for Nonlinear Schrodinger equation the invariant measure must be non-

Gaussian. Can we construct the cumulant in the forth-order correlation function

(1.7) and all higher order cumulants as series in power of Nk? The answer is

positive. In the first order of nonlinearity

Ikk1k2k3 = 2
R(kk1k2k3)

∆(kk1k2k3)
Rkk1k2k3 = Nk1 Nk2 Nk3 + NkNk2 Nk3 −NkNk1 Nk2 −NkNk1 Nk3

∆kk1k2k3 = k2 + k2
1 − k2

2 − k2
3 (1.9)

The denominator in (1.9) is zero if

k + k2, k1 = k3 or k = k3, k1 = k2 (1.10)

However, the nominator on the manifold is zero also. It is announced that this

process can be confirmed to infinity. All cumulants could be found: all of them are

finite and real as (1.9).
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Certainly, this is a consequence of integrability of the NSLE. The same statement

is correct for all equations of focusing and defocusing NSLE hierarchy, as well as

for equations that belong to the KdV hierarchy. However, for three-wave resonant

system this nice and elegant statement fails! In a sense it behaves like a non-

integrable system.

In non-integrable weakly nonlinear systems, the spectral function N(k, t) de-

pends on time obeying the kinetic equation

dN

dt
= Snl (1.11)

and all invariant measures are generated by stationary spectra, which are solu-

tions of equation

Snl = 0 (1.12)

The same might happen with an integrable system. As a result, the integrable

systems are separated in two essentially different classes: strongly and weakly

integrable.

The strongly integrable systems are similar to NLSE. They have infinite amount

of invariant measures preserving all arbitrary spectral functions. All collision terms

in the wave kinetic equations are cancelled in any order. Moreover, they have one

more fundamental property.

Let us study equation (1.1) in the class of fast decaying functions and tend time

to ±∞. The Fourier transform will tend to some limiting values

Ψ(k)→ Ψ± (k)
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It is easy to prove that

|Ψ+ (k)|2 = |Ψ− (k)|2 (1.13)

A similar statement is correct for all strongly integrable systems.

All other systems are weakly integrable. The simplest example is a three-wave

resonant system. In this case scattering is nontrivial and asymptotic squared am-

plitudes of the fields do not coincide. The three-wave kinetic equation is nontrivial.

The system still has infinite amount of invariant measures, but they are parame-

terized by functions of only one variable.

The difference between strongly and weakly integrable systems is pretty delicate.

For instance, KP-2 equation is a strongly integrable system, while KP-1 equation

is only weakly integrable. Thereafter we demonstrate difference between weakly

and strongly integrable systems on some basic examples.
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2 Statistical description of weakly nonlinear systems

We will discuss the weakly nonlinear wave systems homogenous in space. There is a

standard way to develop statistical description of such systems that leads to kinetic

equation for waves. First, we start from the following question: what happens with

kinetic equation, if the primitive dynamic equations are in some sense ”integrable”?

Let us study the following dynamic equation:

∂Ψi(k)

∂t
= i

δH

δΨ∗i (k)
i = 1, ... N (2.1)

HereH is a Hamiltonian and k belongs toK-space, which is different for different

systems. The dimension of this space d = 1, 2. We can consider several examples.

1.

H = H2 + H4 N = 1 (2.2)

H2 =
∫
ω(k)|Ψk|2dk

H4 =
1

2

∫
Tkk1k2k3Ψ

∗
kΨ
∗
k1

Ψk2Ψk3 δk+k1+k2+k3dk dk1 dk2 dk3

In this case equation (2.1) reads:

∂Ψ

∂t
= i ω(k) Ψk + i

∫
Tk k1 k2 k3 Ψ∗k1

Ψk2Ψk3 δk+k1−k2−k3 dk dk1 dk2 dk3 (2.3)

Term Tk k1 k2 k3 satisfies symmetry conditions

Tkk1, k2k3 = Tk1k, k2k3 = Tkk1, k3k2 = T ∗k2k3, kk1
(2.4)
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and k is either the whole real axis −∞ < k < ∞ or is k = (p, q) that represents

a real plane

−∞ < p <∞ −∞ < q <∞.

For d=1 equation (2.1) is integrable, if

H = H(1) + aH(2)

Here a is an arbitrary constant.

Then:

ω
(1)
k = k2 ω

(2)
k = k3

T
(1)
k k1 k2 k3

= α

T
(2)
k k1 k2 k3

=
3α

4
(k + k1 + k2 + k3)

Thus:

H(1) =
∫
k2|Ψk|2dk +

α

2

∫
Ψ∗k Ψ∗k1

Ψk2 Ψk3 δk+k1−k2−k3 dk dk1 dk2 dk3

H(2) =
∫
k3|Ψk|2dk +

3α

4

∫
(k + k1 + k2 + k3) Ψ∗k Ψ∗k1

Ψk2 Ψk3 ×
×δk+k1−k2−k3 dk dk1 dk2 dk3 (2.5)

For equation (2.1):

ω(k) = k2 + a k3 (2.6)

T (k k1 k2 k3) = α


1 +

3a

4
(k + k1 + k2 + k3)


 (2.7)
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After Fourier transformation, it takes form:

∂Ψ

∂t
= −iΨxx + aΨxxx − i α|Ψ|2Ψ + 3 aα|Ψ|2 Ψx (2.8)

If a = 0 and α = −1, this is a focusing Nonlinear Schrodinger equation. If

a = 0 and α = 1, this is a defocusing Nonlinear Schrodinger equation.

For d = 2 equation (2.3) is integrable if k = (p, q), ω(k) = p2 − q2, and

T (k k1 k2 k3) =
α

4





(p1 − p2)2 − (q1 − q2)2

(p1 − p2)2 + (q1 − q2)2
+

(p1 − p3)2 − (q1 − q3)2

(p1 − p3)2 + (q1 − q3)2



 (2.9)

The coupling coefficient T is not yet properly symmetrized. Actually, it can be

replaced by

Tk k1 k2 k3 →
1

2
[T (kk1, k2k3) + T (k1k, k2, k3)]

After the Fourier transformation, equation (2.3) becomes the Davey-Stewarson

equation

∂Ψ

∂t
= î


− ∂2

∂x2
+
∂2

∂y2


Ψ + αU Ψ (2.10)



∂2

∂x2
+
∂2

∂y2


 U =



∂2

∂x2
− ∂2

∂y2


 |Ψ|2

Here α is an arbitrary constant. One can put α = ±1.
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2.

H = H2 + H3 N = 1 (2.11)

H2 =
∫
ω(k) |Ψk|2 dk

H3 =
∫
Vkk1k3

(
Ψ∗kΨk1Ψk2 + ΨkΨ

∗
k1

Ψ∗k2

)
δ(k − k1 − k2) dk dk1 dk2

Equation (2.1) now reads:

∂Ψk

∂t
= i ωk Ψk + i

∫
{Vkk1k2Ψk Ψk2 δk−k1+k2+

+ 2Vk1k, k2 Ψk1 Ψ∗k2
δk−k1+k2

}
dk1 dk2 (2.12)

Integrable versions of equation (2.13) are well known in d = 1. In this case

k = p, 0 < p <∞ and

Nkk1k2 = (p p1 p2)1/2 (2.13)

For ω(k) one can choose:

ω(p) = p3 KdV equation

ω(p) = p2 Benjamen-Ono equation

ω(p) = p2 coth pa Intermediate wave equation

If d = 2, the K-space should be half-plane: p > 0, −∞ < q < ∞. Again,

we have to assume that Vkk1k2 is given by equation (2.14). As for ω(k), it can be

chosen by two essentially different ways:

1. ω(p, q) = p3 +
3q2

p
(2.14)

2. ω(p, q) = p3 − 3q2

p
(2.15)
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By transformation

U =
∫ ∞
0
dp

∫ ∞
−∞ dq

√
p
(
Ψp,q + Ψ∗−p,−q

)
ei(px+qy)dp dq

equation (2.13) can be derived to the KP-equation:

∂

∂x



∂u

∂t
+
∂3u

∂x3
+ u

∂u

∂x


 = α

∂2u

∂y2
(α = ±1) (2.16)
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3.

Let N = 3 and Hamiltonian H is:

H = H2 + H3

H2 =
∑∫

ωi(k) |Ψi(k)|2 dk
H3 =

∫
Vkk1k2 [Ψ∗1(k1) Ψ(k2) Ψ(k3) + Ψ1(k1) Ψ∗(k2) Ψ∗(k3)] δk1−k2−k3 dk1 dk2 dk3

(2.17)

Equation (2.1) turns now to:

∂Ψ1

∂t
= i ω1(k)Ψ1 + i

∫
Vkk1k2 Ψ(k1) Ψ(k2) δk−k1−k2 dk1 dk2

∂Ψ2

∂t
= i ω2(k)Ψ2 + i

∫
Vk1,k,k2 Ψ1(k1) Ψ∗3(k2) δk+k1−k2 dk1 dk2

∂Ψ3

∂t
= i ω3(k)Ψ3 + i

∫
Vk1,k,k2 Ψ1(k1) Ψ∗2(k2) δk−k1+k2 dk1 dk2 (2.18)

Equations (2.19) are known as three-wave equations. They are integrable in

dimensions d = 1, 2 if Vkk1k2 = V = const and ωi(k) are linear functions. Without

loosing of generality, one can assume:

ω1(k) = 0 ω2(k) = ( ~A~k) ω3(k) = ( ~B ~k)

Here ~A, ~B are two-dimensional vectors. If they are not collinear, one can make

the change of variables and put

ω2(u) = p ω3(u) = q

If A,B are collinear, properties of three-wave system depend on the sign of (AB).

If (AB) = −1, we can put ω2 = p, ω3 = −p. If (AB) = 1, we can put ω2 =

ap, ω3 = p/a, a 6= 1. The case a = 1 is degenerative, and the three-wave system

can be solved without use of Inverse Scattering Transform.
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3 Derivation of kinetic equation

Equation (2.17) is the KP-1 equation if α = 1, and is KP-2 equation if α = −1.

Since this moment we assume that u(x, y, t) at any given t is a representative of

homogeneous random field and < u2 >= I1(t) 6= 0. It means that Ψ(p, q) is a

generalized function, such that

< Ψ(k) Ψ∗(k′) >= N(k) δk−k′ (3.1)

< Ψ(k1) Ψ∗(k2) Ψ∗(k3) >= I(k1, k2, k3) δk1−k2−k3 (3.2)

As for the fourth-order correlations, we will assume

< Ψ(k) Ψ∗(k1) Ψ∗(k2) Ψ∗(k3) > = 0

< Ψ(k) Ψ(k1) Ψ∗(k2) Ψ∗(k3) > = N(k)N(k1) [δk−k3 δk1−k3 + δk−k2 δk1−k3]

(3.3)

Truncation (3.3) makes possible to construct a closed system of equations for

Nk, Ikk1k2. They are:

∂Nk

∂t
= 2

∫
Vkk1k2 Im Ik,k1k2 δk−k1−k2 dk1 dk2 −
−4

∫
Vk1,k,k2 Im Ik1,k,k2 δk−k1+k2 dk1 dk2 (3.4)

∂

∂t
Ik k1 k2 = i(ωk − ωk1 − ωk2) Ik k1 k2 +

+2 i Vk k1 k2(Nk1 Nk2 −NkNk1 −NkNk2) (3.5)

13



Equation (3.5) is linear and inhomogeneous. If we assume that

Ikk1k2|t=0 = I0
kk1k2

N(k)|t=0 = N0(k),

then

Ikk1k2 = 2 i Vkk1k2

∫ t
0
ei∆kk1k2 (τ−t)Rkk1k2(τ ) dτ + I0

kk1k2

Rkk1k2 = Nk1 Nk2 −NkNk1 −NkNk2

∆kk1k2 = ωk − ωk1 − ωk2 (3.6)

Let t → ∞. Then everything depends on the following fundamental question:

can we find a real solution of equations

∆kk1k2 = ωk − ωk1 − ωk2 = 0, ~k = ~k1 + ~k2 ? (3.7)

One can see that for KP-2, where ωk = p3 − 3q2/p, this is impossible.

Then, if t→∞, Nk tends to some asymptotic value

Nk → N∞(k),

where

I∞kk1k2
→ −2Vkk1k2 [N∞(k1)N∞(k2)−N∞(k)N∞(k1)−N∞(k)N∞(k2)]

ω(k)− ω(k1)− ω(k2)
(3.8)

Notice, that I∞kk1k2
is real. As for N∞(k), we can make a conjecture that by a

proper choice of N0(k), function N∞(k) can become an arbitrary positive function

on k.
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4 Kinetic equation for KP-1 equation

The small amplitude waves in KP-1 equation are described by the standard 3-wave

kinetic equation:

∂Nk

∂t
= 4π

{∫
|Vkk1k2|2 δk−k1−k2 δωk−ωk1−ωk2

(Nk1Nk2 −NkNk1 −NkNk2)dk1 dk2+

+ 2
∫
|Vk1, k, k2|2 δk−k1+k2 δωk−ωk1+ωk2

(Nk−1Nk2 −NkNk2 + NkNk1) dk1dk2

}
=

= Snl (4.1)

However, this equation has some peculiar features that makes it completely

different from similar equations in genetic nonintegrable systems. To trace these

peculiarities, we should notice that the dispersion relation

ω(p, q) = p3 +
3q2

p

can be presented in the following parametric form:

p = ξ − η η < ξ

q = ξ2 − η2 (4.2)

ω = 4(ξ3 − η3)

In variables ξ, η the resonant conditions

k = k1 + k2

ωk = ωk1 + ωk2
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have the following form:

ξ1 − η1 + ξ2 − η2 = ξ − η
ξ2

1 − η2
1 + ξ2

2 − η2
2 = ξ2 − η2 (4.3)

ξ3
1 − η3

1 + ξ3
2 − η3

2 = ξ3 − η3

Equations (4.3) have nontrivial solutions:

ξ1 = η2 ξ2 = ξ η1 = η

ξ2 = η1 ξ1 = η η2 = η (4.4)

In these variables equation (4.1) reads:

∂

∂t
N(ξ, η) = Snl =

π

3

{∫ ξ
η

(ξ − λ)(λ− η) [N(ξ, λ)N(λ, η)−N(ξ, η)N(ξ, λ)−N(ξ, η)N(λ, η)] dλ+

+
∫ η
−∞(η − λ)(ξ − λ) [N(ξ, λ)N(η, λ) + N(ξ, η)N(ξ, λ)−N(ξ, η)N(λ, η)] +

+
∫ ∞
ξ

(λ− η)(λ− ξ) [N(λ, ξ)N(λ, η) + N(ξ, η)N(λ, η)−N(ξ, η)N(λ, ξ)] dλ
}

(4.5)

Equation (4.5) has infinite number of motion constants In

dIn
dt

= 0, In =
∫ ∞
−∞ dξ

∫ ξ
∞(ξn − ηn)(ξ − η)N(ξ, η) dη (4.6)

Stationary equation

Snl = 0 (4.7)

has infinite amount of exact solutions.
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One can check that the function

N(ξ, η) =
T

f (ξ)− f (η)
(4.8)

where T is a constant, satisfies equation (4.7). Solution (4.8) has a clear physical

meaning: KP-1 equation is a member of a certain hierarchy of integrable equations.

The linear part of each equation is:

∂Ψk

∂t
= i ω(k) Ψk + · · ·

Dispersion law ω(k) = ω(p, q) can be presented in parametric form as follow:

p = ξ − η
q = ξ2 − η2 (4.9)

f (p, q) = f (ξ)− f (η)

Solution (4.9) is the Rayley-Jeans solution corresponding to the dispersion rela-

tion (4.10). It has singularity on the diagonal ξ = η; on this diagonal p = 0, q = 0.

This solution has no other singularities if f (ξ) is a monotonically growing function

on the axis −∞ < ξ < ∞, and represents a thermodynamic-type solution. As

a rule, kinetic equation for waves has also Kolmogorov-type solutions, describing

redistribution of energy along the spectrum. Solutions of this type for equation

(4.6) are not found yet.

Higher members of the KP-1 hierarchy also have reasonable three-wave kinetic

equations. They have the same set of motion constant (4.6) and the same exact

solutions (4.9) as equation (4.5).
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Three-wave system (2.17) in the generic integrable case

ω1 = 0 ω2 = p ω3 = q V = 1

also admits the statistical description in terms of kinetic equation. Assuming

that

< Ψi(k) Ψ∗i (k
′) >= Ni(k) δ(k − k′),

after some calculation we will end up with the following system of equations:

∂N1(k)

∂t
=

4π
∫
{N2(k1)N3(k2)−N1(k)N2(k1)−N1(k)N3(k2)} δk−k1−k2δ(p1 + q2)dk1dk2

∂N2(k)

∂t
=

4π
∫
{N1(k1)N3(k2)−N2(k1)N1(k1)−N2(k1)N3(k2)} δk−k1−k2δ(p− q2)dk1dk2

∂N3(k)

∂t
=

4π
∫
{N1(k1)N2(k2)−N3(k)N1(k1)−N3(k)N2(k2)} δk−k1−k2δ(q − p1)dk1dk2

(4.10)

As equation (4.5), equations (4.10) have infinite amount of exact thermodynamic

solutions. In a given presentation we don’t have enough time to discuss these

solutions in details.
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5 Absence of higher-order kinetic equations

In the previous chapter we have seen that the statistical properties of some in-

tegrable systems (KP-1, 3-wave equation) can be described by three-wave kinetic

equation. If for some reason three-wave resonances are forbidden and we will try

to construct high-order kinetic equation, we will inevitably fail. Again, let us start

with examples.

Let us consider equation (2.2). Using a procedure, similar to described in Chap-

ter 3, we easily can construct a closed system of equations for Nk and a forth-order

cumulant, which can be defined as follow:

Im < Ψ∗k1
Ψ∗k2

Ψk3 Ψk4 >= Ik1 k2 k3 k4 δk1+k2−k3−k4 (5.1)

Equation for Ik1 k2 k3 k4 can be resolved by a standard way, and we will end up

with a standard kinetic equation:

∂N(k)

∂t
= 4 π

∫
|Tk k1 k2 k3|2 δ(k + k1 − k2 − k3) δ(ωk + ωk1 − ωk2 − ωk3)×

(Nk1 Nk2 Nk3 + NkNk2 Nk3 −NkNk1 Nk2 −NkNk1 Nk3) dk1 dk2 dk3 =

= Snl (5.2)

Let us try to construct the kinetic equation for generalized NSLE (2.8). In this

case

ωk = k2 + a k3
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The resonant manifold

ωk + ωk−1 = ωk2 + ωk3, k + k1 = k2 + k3 (5.3)

can be reduced to one algebraic equation. Assuming that

k = P + p, k1 = P − p, k2 = P + q, k3 = P − q (5.4)

we find that (5.3) is equivalent to equation

(p2 − q2)(1 + 3 aP ) = 0. (5.5)

For the case q = ±p, we have trivial resonances:

q = p : k2 = k, k1 = k3 q = −p : k3 = k, k1 = k2 (5.6)

Obviously, for them Snl ≡ 0. Nontrivial inelastic resonances take place if

1 + 3 aP = 0. However, by plugging (5.4) into (2.7) we find that

T (k, k1, k2, k3) = α(1 + 3 aP ) ≡ 0

A similar situation takes place for the Davey-Stewardson equation (2.10). Now

ω(p, q) = p2 − q2

and the resonant manifold

ω(p, q) + ω(p1, q1) = ω(p2, q2) + ω(p3, q3)

p + p1 = p2 + p3

q + q1 = q2 + q3 (5.7)
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can be reduced to one equation, if we put

p = P + ξ1, p1 = P − ξ1, p2 = P + ξ2, p3 = P − ξ2

q = Q + η1, q1 = Q− η1, q2 = Q + η2, q3 = Q− η2 (5.8)

By plugging (5.8) into (5.7), we derive the equation

ξ2
1 + ξ2

2 − η2
1 − η2

2 = 0 (5.9)

Plugging (5.8) to (2.9), we find that

Tk k1 k2 k3 ∼ (ξ2
1 + ξ2

2 − η2
1 − η2

2)2 = 0

In this case trivial resonances are not separated from nontrivial. They form a

connected manifold, where T (kk1k2k3) ' 0.

As we know, for KP-2 equation the three-wave resonances are forbidden. Of

course, four-wave resonances are allowed. One can perform a canonical transfor-

mation, excluding cubic nonlinearity in the Hamiltonian. The four-wave resonances

are described by equation

p2 − 3 q2

p
+ p2

1 −
3q2

1

p1
= p2

2 −
3 q2

2

p2
+ p2

3 −
3 q2

3

p3
p + p1 = p2 + p3

q + q1 = q2 + q3 (5.10)
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The expression for effective four-wave coupling coefficient T (kk1, k2k3) is pretty

complicated. It can be found in the article []. Nevertheless, in the same article was

directly demonstrated that T (kk1k2k3) ' 0 on the manifold (5.10).

For higher order processes the situation is as bad as for four-wave interaction.

In article [] was demonstrated that the amplitude of six-order processes on the

resonant manifold is identically zero. For both KdV and Benjamin-Ono equations,

the first nontrivial process is five-wave interaction. It is easy to prove that this

amplitude is identically zero. This result will be published soon.
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6 Turbulence in strong integrable systems

Let us return to NSLE and treat it as a typical representative of strongly inte-

grable system. We propose that this equation has infinite number of statistically

stationary states parameterized by an arbitrary positive function of one variable

N(k). The condition

dN

dt
= 0

makes possible, at least in principle, to find all higher order correlation functions

and reconstruct the invariant measure in the functional space. The stationary state

is spatially uniform. It means that one can introduce a set of constants:

I1 = lim
L→∞

1

L

∫ L/2
−L/2 |Ψ|2 dx

I2 = lim
L→∞

1

L

∫ L/2
−L/2



|Ψx|2 − 1

4
|Ψ|4



 dx

I3 = . . . (6.1)

These constants are densities of commuting motion integrals. Existence of in-

variant spectrum N(k) presumes existence of invariant measure. One can guess

that this measure is nothing but the Gibb’s measure:

ρ[Ψ] =
1

z
e−

∑∞
i=1 µi Ii (6.2)

Here µi are ”chemical potentials”, corresponding to given motion constants, and

z is the statistical sum given by functional integral
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z =
∫
e−

∑∞
i=1 µi Ii dΨ(x) dΨ∗(x) (6.3)

Each stationary state is characterized by the probability distribution function

ρ(ξ) = ρ(|Ψ|2),
∫ ∞
0
ρ(ξ) dξ (6.4)

One can guess that any stationary state is completely defined by the set of

constants I1, I2, . . .. As far as NLSE is the scale invariant equation, one can put

without violation of generality that I1 = 1. Then the basic physical properties of

the stationary state are defined in large degree by the value of I2. If I2 →∞, this

is a state close to superposition of weakly interacting, almost linear waves. On the

contrary, if I2 → −∞, this state is the solitonic gas superposition of well separated

weakly interacting solitons. The both cases can be studied efficiently but they need

completely different treatment. In spite of illusory simplicity of this theory, some

important questions are not yet answered.

The most important one is the question about modulational instability. One of

the stationary states in the Bose-condensate

N(k) = δ(k)

In the defocusing NLSE the condensate is stable, but in the focusing case it

is unstable. Development of this instability generates something intermediate be-

tween weak turbulence and solitonic gas. The theory of condensate instability is

pure dynamical and simple.
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Much more difficult is the question of stability of ”broaden” condensate

N(k) =
1

π

γ

(k2 + γ2)
(6.5)

Again we assume that< N(k) >= 1. One can study stability of this distribution

in framework of the mean-field approximation. This approximation can be used

for study of long-scale perturbations with a characteristic wave number much less

than γ. In spite of the fact that the homogeneous kinetic equation does not exist,

the inhomogeneous kinetic equation makes sense. If we suppose that N is also a

function of ”slow” variables x, t, we can write the following ”Vlasov-type” equation

∂N

∂t
+ k

∂N

∂x
− ∂N

∂k

∂n

∂x
= 0, n = −

∫ ∞
−∞N(k) dk (6.6)

Now one can assume

N = N(k) + δ N e−iω t+i ρ x

and end up with characteristic equation

∫ ∞
−∞

1

s− k
∂N

∂k
dk = −1 (6.7)

Here s = ω/p.

By plugging (6.5) to (6.7) and calculating the integral, one finds easily

s = −i(γ − 1) (6.8)
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In other words, distribution is stable if γ > 1, and unstable if γ < 1. This

consideration is nice but has a weak point. According to (6.8)

ω = −i(γ − 1)p (6.9)

Thus, Imω →∞ as p→∞.

It is clear that in reality

Imω = −(1− γ)p + qp2 + · · ·

q > 0 is some positive constant depending on γ. Determination of this constant

is a question of theoretical and practical importance. Apparently it cannot be done

in framework of the mean-field approximation.

The second fundamental question is the intermittency or structure of higher

momentum

In(y) = |Ψ(x + y)− Ψ(x)|2n

This question is interesting when

I2 < 0, |I2| >> 1

In this case the stationary case is a solitonic gas defined by the distribution

function on soliton amplitudes. The higher moments, as far as the PDF (6.4)

should be directly expressed in terms of distribution function for solitons. Theory

of solitonic gas is a very interesting subject deserving a special consideration.
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