Wave kinetic in fiber laser with random Rayleigh backscattering

D.V. Churkin and S.K. Turitsyn

Aston Institute of Photonic Technologies, Electronic Engineering, Aston University, England

S.A. Babin, E.V. Podivilov and I.D. Vatnik

Institute of Automation and Electrometry SB RAS

I.V. Kolokolov, V.V. Lebedev and S.S. Vergeles

Landau Institute for Theoretical Physics RAS

I.S. Terekhov

Budker Institue of Nuclear Physics SB RAS

Outline

- 1. Experimental setup
- 2. General model of the experiment.
 Formulation of the reduced model
- 3. Qualitative picture
- 4. Kinetic description for the reduced model
- 5. Results

1. Experimental setup

2. General model of the experiment

$$\left[n\partial_t + \left(\partial_z - \frac{1}{2}P\hat{g} + \frac{1}{2}\alpha\right)\right]A_+ = \frac{i}{2}\beta_2 \partial_t^2 A_+ + i\gamma A_+|A_+|^2 + rA_-$$

$$\left[n\partial_t - \left(\partial_z - \frac{1}{2}P\hat{g} + \frac{1}{2}\alpha \right) \right] A_- = \frac{i}{2}\beta_2 \partial_t^2 A_- + i\gamma A_- |A_-|^2 + r^* A_+$$

- n refractive index
- β_2 chromatic dispersion
- α linear losses
- γ Kerr nonlinearity
- r random backscatters
- P(z) pumping intensity profile
- \hat{g} gain coefficient

2. Parameters of the model

Gain coefficient:

in frequency domain

$$g(\omega) = g_R \left(1 - \frac{(\omega - \omega_s)^2}{{\Delta_g}^2} \right)$$

$$g_R = 1.35 \ 1/W/km$$

$$\Delta_g \approx 5.5 \ 1/ps$$

The width of the lasing spectrum

$$\Delta \approx 0.7 \div 1.3 \ 1/ps$$

Random backscatters:

statistics in a sense of spatial average $\langle r(z) r^*(z') \rangle = D \, \delta(z - z')$

nature of the backscattering:

 $D\approx \alpha/600$

linear losses

 $\alpha \approx 0.18 \ 1/km$

$$\begin{bmatrix} n\partial_t + \left(\partial_z - \frac{1}{2}P\hat{g} + \frac{1}{2}\alpha\right) \end{bmatrix} A_+ =$$
$$= \frac{i}{2}\beta_2 \partial_t^2 A_+ + i\gamma A_+ |A_+|^2 + rA_-$$

Length of the fiber L = 850 m

Pumping wave intensity: $P_{th} = 5.5 W$, P < 10W

Lasing intensity: $I_{out} \leq 2.2 W$

Kerr nonlinearity:

 $\gamma \approx 3.45 \; 1/W/km$

2.1 Balance equations

Equations on full intensity

$$\begin{split} \pm \partial_z I_{\pm} &= g_0 P I_{\pm} - \alpha I_{\pm} + D I_{\mp} \\ -\partial_z P &= -\frac{\omega_p}{\omega_s} g_R I P - \alpha_p P, \qquad I = I_+ + I_-, \\ \text{final width was neglected, } \Delta \ll \Delta_g \text{ is assumed} \end{split}$$

Threshold condition

$$1 = D \int_{0}^{L} dz_{1} \exp \left[2 \frac{\exp(-\alpha_{p}L) \left[\exp(\alpha_{p}z) - 1 \right]}{\alpha_{p}} g_{R} P_{th} - 2\alpha_{p}\alpha z \right]$$
Solution above the threshold

$$I = \frac{C \exp(\alpha_{p}(z-L))}{\frac{P_{in}}{P_{th}} \exp\left(C g_{R} P_{th} z_{eff}\right) - \frac{\omega_{p} I_{out}}{\omega_{s} P_{th}}} I_{out}, \quad P = \frac{C \exp(\alpha(z-L))}{\frac{P_{in}}{P_{th}} - \frac{\omega_{p} I_{out}}{\omega_{s} P_{th}} \exp\left(-C g_{R} P_{th} z_{eff}\right)} P_{in},$$

$$C = \frac{P_{in}}{P_{th}} - \frac{\omega_{p} I_{out}}{\omega_{s} P_{th}}, \qquad z_{eff} = \frac{1 - \exp(-\alpha_{p}(L-z))}{\alpha_{p}}.$$

2.2 Role of random Rayleigh backscattering

$$\begin{bmatrix} n\partial_t - \left(\partial_z - \frac{1}{2}P\hat{g} + \frac{1}{2}\alpha\right) \end{bmatrix} A_-$$

= $\frac{i}{2}\beta_2 \partial_t^2 A_- + i\gamma A_- |A_-|^2 + r^* A_+$

 $A_{\omega} \equiv A_{+\omega}$

$$A_{\omega}(0) = R(\omega)A_{\omega}(L),$$

Weak mirror with random phase

$$\langle R(\omega)R^*(\omega')\rangle = \frac{D\exp[\Pi(L)g(\omega) - \alpha L]}{2(g_R P_{\rm in} - in(\omega - \omega'))}, \quad \Pi(z) = \int_0^z dz_1 P(z_1).$$

Mean strength of the mirror

Correlation frequency

$$\delta \omega_r \sim g_R P_{in}/n.$$

$$\langle |R(\omega)^2| \rangle = (D/2g_R P_{in}) exp[\Pi(L)g(\omega) - \alpha L]$$

 $\langle |R(\omega)^2| \rangle \leq 10^{-2}$

2.3 Spontaneous emission

Balance equations on spectrum (in absence of nonlinearity) $\partial_z I_\omega = g(\omega)PI_\omega - \alpha I_\omega + DI_{\omega-} + 2g(\omega)P\hbar\omega$

$$-\partial_z I_{\omega-} = g(\omega) P I_{\omega-} - \alpha I_{\omega-} + D I_{\omega} + 2g(\omega) P \hbar \omega$$

Spontaneous emission is relevant only in regions with small intensity

2.4 Reduced model

Comoving reference frame

 $\psi(z,t) = A\left(z,t+\frac{z}{v_g}\right)\exp(ik_s z - i\omega_s t),$

group velocity v_g at carrying frequency ω_s ,

$$i\left(\partial_{z} - \frac{1}{2}P\hat{g} + \frac{1}{2}\alpha\right)\psi = \frac{1}{2}\beta \partial_{t}^{2}\psi + \gamma\psi|\psi|^{2}, \qquad 0 < z < L$$

Boundary conditions on correlation function

$$I_{\omega}(0) = \langle |R(\omega)^{2}| \rangle I_{\omega}(L) + \delta I_{\omega,se}$$

3. Qualitative picture

S.Babin et.al., JOSA-B 2007

Small lasing intensity:

Schawlow-Townes process.

 broadening due to spontaneous emission

acts in region with weakest intensity

 narrowing due to selective gain acts along the whole fiber

Large lasing intensity

Nonlinear process

- broadening due to nonlinearity acts in region with highest intensity
- narrowing due to selective gain acts along the whole fiber

4. Kinetic description for the reduced model

$$i\left(\partial_{z} - \frac{1}{2}P\hat{g} + \frac{1}{2}\alpha\right)\psi = \frac{1}{2}\beta \partial_{t}^{2}\psi + \gamma\psi|\psi|^{2}$$

Collision integral for the NLSE is pure zero

V.E.Zakharov, Turbulence in integrable systems, 1999

4.1 Field description and perturbation theory

Action

$$\begin{split} S_{\psi p} &= \int_{0}^{L} dz \int dt \, \left[\overline{p} \left(\left(\partial_{z} - \frac{1}{2} P(z) \widehat{g} \right) \psi + \frac{i}{2} \beta_{2} \partial_{t}^{2} \psi + i \gamma \, \psi |\psi|^{2} \right) + \\ &+ p \left(\left(\partial_{z} - \frac{1}{2} P(z) \widehat{g} \right) \overline{\psi} - \frac{i}{2} \beta_{2} \partial_{t}^{2} \psi - i \gamma \, \overline{\psi} |\psi|^{2} \right) \right] \end{split}$$

4.2 Kinetic equation

General form of kinetic equation

$$(\partial_z - P(z)g(\omega))F_{\omega}(z) = \int_0^z dy \left(\Sigma_{\omega}(z, y)F_{\omega}(y, z) + G(z, y, \omega)Y_{\omega}(y, z) + c.c.\right)$$

Expansion in small nonlinearity

Assumptions:

i) slowly varying pumping, $\ln' P \ll g_R P$

ii) small width of the spectrum, $\Delta \ll \Delta_g$

4.2 Parameters in kinetic equation

$$(\partial_z - g(\omega)P + \alpha)F_{\omega}(z) = 2\gamma^2 \int \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \times \frac{d\omega_1 d\omega_2 d\omega_3}{(2\pi)^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_1 - \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P^2(z) + \Phi^2} \delta(\omega + \omega_2 - \omega_3) \frac{g_R P(z)}{g_R^2 P$$

$$\times \left[F_{\omega}F_{\omega_2}F_{\omega_3} + F_{\omega_1}F_{\omega_2}F_{\omega_3} - F_{\omega}F_{\omega_1}F_{\omega_2} - F_{\omega}F_{\omega_1}F_{\omega_3}\right],$$

$$\Phi = \beta(\omega^2 + \omega_1^2 - \omega_2^2 - \omega_3^2)$$

- **1)** Spectrum squeezing due to gain dispersion $2g_R \frac{\Delta^2}{\Delta_a^2} \int_0^L P(z) dz \approx 0.2 \div 0.7$
- 2) Dispersion vs. pumping: $\frac{\beta \Delta^2}{g_P P} \lesssim 0.3$
- 3) Integral nonlinearity: $\gamma \int_0^z I(z) dz \approx 0.5$
- 4) Nonlinearity vs. dispersion $\frac{\gamma I_{out}}{\beta_2 \Delta^2} \leq 0.7$
- 5) Length where backscattering occurs: $\delta_r\approx 50m$

4.3 Small nonlinearity, small dispersion

$$\frac{\beta\Delta^2}{g_R P} \ll 1, \qquad \gamma \int_0^z I(z) dz \ll 1$$

Boundary condition:

$$\begin{split} F(z = 0, t) &= \kappa F(L, t); \quad \kappa \, \exp[\Pi(z)g_R] = (1 + \eta) \\ F(L) &= \exp[\Pi(z)g_R] F(0) + \, \delta F(L); \\ \eta F(L) &+ \, \delta F(L) \, = \, 0 \end{split}$$

Local equation on
$$F(L, t)$$
: $\eta F + 2\alpha L \partial_t^2 F + \frac{\gamma^2}{8g_R^2} (F|F|^2 - FI^2)$

$$F(L,t) = \frac{4 g_R \sqrt{2\alpha L \Delta}}{\gamma ch(\Delta t)}, \qquad \gamma I = 4\sqrt{2} g_R \sqrt{2\alpha L} \Delta, \qquad \eta = 2\alpha L \Delta^2$$

S.Babin et.al., JOSA-B 2007

5. Results. 5.1. Experiment

5.3. Results: Experiment vs Theory

5.3. Results: Experiment

5.2. Results: Experiment vs Theory

