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1. Calculation of longitudinal interlayer MR in SCBA starting
from the strongly-anisotropic quasi-2D electron dispersion.
Its comparison with the two-layer tunneling approach.

Crossover from linear to square-root longitudinal MR at t, ~ /@, I, .
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2. Angular dependence of monotonic and oscillating parts of
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Introduction

Layered quasi-2D metals
(Examples: heterostructures, organic metals, all high-Tc superconductors)

Magnetic
field B‘ 2D electron gas

Electron wave functions overlap leads to
the finite interlayer transfer integral t,

fis

¢

2D electron gas <Aectron dispersion in the tight-binding
approximation is highly anisotropic:
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(coherent-tunneling,
conserving p)

B ; :
I Landau levels | Fermi surface in layered Q2D

«
metals is a warped cylinder.
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Motivation and urgency

Layered compounds are very common: high-Tc cuprates, pnictides,
organic metals, intercalated graphites, heterostructures, etc.

Magnetoresistance (MQO and AMRO) is used to measure the quasi-
particle dispersion, Fermi surface, effective mass, mean scattering time..
It is an important complementary tool to ARPES.

Experimentally observed dimensional IF:;; (c) M=Fe (A)
crossover: 3D -> quasi-2D -> 2D shows

many new qualitative features: |
(1) monotonic growth of R_,(B,), 1400 1
(2) different damping of MQO, 1200

(3) different angular dependence of MR
0
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B (T)
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ARPES (Angle resolved photoemission spectroscopy)
Main idea:

E = hw— By —¢

E, = kinetic energy of the
outgoing electron — can
be measured.

hw = incoming photon

photon source energy analyser

hv
energy - known from
experiment, ¢ = known
electron work function.
Angle re_solutlon of ample T, | /
photoemitted electrons \ '
gives their momentum. UHV - Ultra High Vacuum
P (p <107 mbar )

Rev.Mod.Phys. 75, 473 (2003)

The photocurrent intensity is proportional to a one-particle spectral function

multiplied by the Fermi function: jr[]:{ .',.-_,.1} _ F].I[l{ 5 ]lflfu.f]

- v | !
Alw. k} = _i - [-'L'_j . Therefore can find out
| T (w—e(k) — X' (w))? + X"(w)? information about E(k)

Drawback 1: Only surface electrons participate! Motivation
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ARPES data and Fermi-surface shape

b-axis T

(a) (b)

The Fermi surface of near
optimally doped BI;Sr;CaCu,0s,;
(a) integrated intensity map
(10-meV window centered at
EF) for Bi2212 at 300 K
obtained with 21.2-eV photons
(Hel line); (b),(c) superposition
of the main Fermi surface (thick
lines) and of its (p,p) translation
(thin dashed lines) due to
backfolded shadow bands; (d)
Fermi surface calculated by
Massidda et al. (1988).

Drawback 2: Ambiguous interpretation.
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Phase diagram of high-Tc cuprate SC.
High Tc and quantum phase transition

Nd, ,Ce, CuO,
(NCCO)
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(2009)
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Angular dependence of background magnetoresistance
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Figure 1 Polar AMRO sweeps in an overdoped TI2201 single crystal (7. = 20K). The
datawere takenat 7= 4.2K and H = 45 1. The different azimuthal orientations (+ 4%) of
gach polar sweep are stated relative to the Cu—0—Cu bond direction. The key features of
the data are as follows: (1) a sharp dip in p, at @ = 907 for low values of ¢, which we
attribute to the onset of superconductivity at angles where Hoo(é, 8) is maximal, (2) a
broad peak around H|jab (@ = 90°) thatis maximal for ¢ = 45°, consistent with previous
azimuthal AMRO studies in overdoped TI2201 (ref. 16), (3) a small peak at H||¢ (@ = 07),
and (4) a second peak in the range 25° < & << 45° whose position and intensity vary
strongly with @. These last two features are the most critical for our analysis. Similar
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N. E. Hussey et al., "A coherent 3D Fermi
surface in a high-Tc superconductor”,
Nature 425, 814 (2003)
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Magnetoresistance studies of organic metals

There are very many papers on the study of electronic properties of
organic metals using magnetoresistance measurements.

Some books:

1. J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals
and Superconductors (Springer-Verlag, Berlin, 1996).

2. T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors,
2nd ed. (Springer-Verlag, Berlin, 1998).

3. A.G. Lebed (ed.), The Physics of Organic Superconductors and
Conductors, (Springer Series in Materials Science, 2009).

Some review papers:

1. D.Jérome and H.J. Schulz, Adv. Phys. 31, 299 (1982).

2. J.Singleton, Rep. Prog. Phys. 63, 1111 (2000).

3. M.V. Kartsovnik, High Magnetic Fields: A Tool for Studying Electronic
Properties of Layered Organic Metals, Chem. Rev. 104, 5737 (2004).

4. M.V. Kartsovnik , V.G. Peschansky, Galvanomagnetic Phenomena in

Layered Organic Conductors, FNT 31, 249 (2005) [LTP 31, 185].
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MQO of all thermodynamic quantities
can be easily calculated from the DoS

The thermodynamic potential is given by the integral of DoS:

- . . — F
MNpu. B.1T) = —1 /;}{_L'.Hjln [1 + exp (’“ T )] dl
0 '
ﬂ"-{BIIEET-'I‘I'F]IUESFECH;GFEEDE |
. . . . 01k T=044 K i
Magnetization is given | 007
by the derivative g |
- £ 0
(B o5} ]
- (\ b B E 01k « dHvA data
—— 20 formula (1)

B (T}

‘ But the transport quantities cannot be calculated so simply!
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Theory of magnetoresistance is not as simple

While the thermodynamic potential is a linear functional of the DoS,
conductivity has nonlinear dependence on DoS.

Usually one separates monotonic (background) classical MR and MQO:
o(B)=0,(B)+5(B)

In quasi-2D metals the oscillations (MQO) are strong,

and such separation in the theory is incorrect
even if MQO are smeared by T or long-range disorder.

Accurate calculation of longitudinal MR in the presence of MQO explains the
monotonic growth of MR even in the one-particle approximation (electrons + B +
disorder).
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Monotonic longitudinal MR remains unexplained

La0o | (©) M=Fe (A) a-(BEDT-TTF),KHg(SCN),
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1.

3.

12
Recent theoretical predictions for interlayer MR R, ,(B)

[1] P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).
[2] P. D. Grigoriev, JETP Lett. 94, 48 (2011) [arXiv:1104.5122].

Longitudinal interlayer
magnetoresistance (MR Rz

INEo MR) ™ Theory
grows with B, at ®.T > 1: R (B :
R,, ~ B,2. It grows even if\ 2 (B) Q
MQO are damped by Tor  ° ﬂ
by long-range disorder. .
B,-dependence of MQO : U:U:'
amplitude changes. The I Old Brull ;EU
Dingle low Ry=exp(-By/B,) iima ¥
) ] . I ‘Ai'l'::ll:.':l“”l::l:|l: ll 'I .'
is not valid (asin 2D case) ., _~ "“““"""""‘"‘""'""""l""l"":'\".“‘"."‘" TS
Angular dependence of s 1 1 " °
MR changes: both the - 5 —1/4
monotonic part and the G.. (B) = og {(2&)@7') + 1}

SIAIUNEE @1 bR The coefficient 2 slightly depends on the LL shape
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The model of weakly coherent regime

P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011); JETP Lett. 94, 48 (2011).

The Hamiltonian contains 3 terms: )
- - - - Magnetic
H—=Hy+ H; + Hy 2D electron gas fielgB
. . . electron gas

1. The 2D free electron Hamiltonian in : Y
magnetic field summed over all layers: 2D electron gas czzl

HU — E ‘F_‘QD (?}?){.f:’;,jrﬂlrj' w

m,j

3. The coherent electron tunneling between any two adjacent layers:
Hy =2ty /f-z.m-zy[xp}(.f. )T 1 (e, y) + U (o, y) T (e, y)],
=

2. The short-range

impurity potential: Hr = Z Vi (r) where V. (1) = U&> (r — 1)
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Calculation of conductivity in g2D metals
(standard theory, generalization to hw_~ 4xt, )

Electron dispersion in the tight-binding N
approximation is highly anisotropic: e(p)=¢(p1)+2t, cos(pzd/h), t,<<Ef

Conductivity (the linear response to external electric field)

is calculated from the Kubo formula: @

Oz = f/zzmvzz(m)j‘ g::_[z Im G, (m,&)I’[-n'¢ (&)],

where m=(n, k, k,), the electron velocity V,(&,n)=0¢g/dK,,
Is determined by the 3D electron dispersion,

G, (m, &) - retarded electron Green’s function,

n;: (e)=-1/ {4T cosh’ [(8 — ﬂ)/ 2T ]} Irreducible self-energy in the

T N . non-crossing (self-consistent)
- derivative of the Fermi distribution function. | ;o o imation. The double

line is exact Green's function.
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Previous theoretical results on Shubnikov -
de Haas effect in quasi-2D metals

Equations for the Green’s function in self-consistent Born
approximation in quasi-2D metals are complicated:

SE(m,e)= < 2 U*G(r,,r, ,E)> = C'?-U2J ’rG(r,r,E), where

=, Akt ~ E-X(F)
1+ ZZ(—l)k.fo ( o ) exp (mef hon : ) }
k=1 '

Conductivity was calculated before only in the simple Born approximation

Quasi-2D case, hw << 4rt, Almost 2D case, hw >>t,
[P.D. Grigoriev, cond-mat/0204270 (April 2002); [T. Champel and V.P. Mineev, PRB 66,
PRB 67, 144401 (2003) (Submitted April 2002)] | 195111 (2002) (Submitted June 2002)]

Use exp:ansmn o th? smaIL%aram?ter _ Introduce very large electron reservoir
Jo (4t [hue) exp (=27 [ImE™ (e)| /hwe) < 1 | 44 damp MQO of the electron DoS.

_*?\.-"
G(E) = —LE {A(E) +in

hw,
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Electron Green’s function in SCBA in q2D metals

Hamiltonian contains q2D free electrons + short-range impurity scattering:
H — I:IO — I:II, Hy = 2631) (m) ¢t em, m={n,ky, k,} Hy = ZVz (r)
we use 3D (or Q2D) electron dispersion in tight-binding approximation:
esp (k) &~ eap — 2t cos(k.d), €p = €p(n) = hw.(n+7)

This gives the system of equations:

Y(e) = n;U + n,,;UQG(E), G(e) = Z \/( (91;1:/4 o :
7 € —€xp(N)— > (e — 4t§

If 4t,< hw,, one can consider each LL separately and
equation on X simplifies to 4-order algebraic equation:

Zz (AE . Z*)Q - 4_[/_2] _ (FOFLCUC)Q where 2* — E(E) — nz(]
and Ac = ¢ — ep ('n-p) —n;U

Two limits depending on t, /. /@, I,
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Electron self energy in SCBA in g2D metals

Equation on electron
self-energy

»?2 [(As %) - 4t§] — (Dohw,)?

gives the following solution for 3 values of t,/. /.1, =0,0.5,1.0

ReZ, ImZ,

ReX.(Ag)" Im = (Ag)/"‘

051

-1.0

ReX.(Ae =0)=0
Re=.(As — ) —0

| ]
2 4

-4

Im Z*(Ag)qé O only in finite interval
around each Landau level
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Interlayer conductivity

From Kubo formula for 3D metals with anisotropic dispersion

Tzz = /df [_an(:) gzz(f)- where —nF 1/{—1T(U“> [ —;1.)/2’11]}.
: i
independence of background MRon T
2h

m = {n, ky, k,}
esp (k) ~ eap — 2t, cos(k,d)
Im> % ()
e — e(m) — ReXR(e)]” + [Imf ()]
and integrating over k, we obtain:
oohw, TD 41‘2 (,Ae) + 1 A€ |ImZR )‘

2 R, )
27tz |Im \/41‘2 Ae — i [ImSR(= )DQ

The electron self-energy y'2 [(Ag _ Z*)Q . 4t2] _ (Fohwc)Q

IS given equation in SCBA

0.2(c) =

— Y 02 (k) [2ImGR(m, <))

m

Substituting ImGRr(m,e) =

sz (€)
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Result 2. R,,(B,) at finite interlayer transfer integral t,

Linear MR for

. —:=Zlff = w, <2t ) IT,
E 4_' =8, .-+ Square-root MR

- .. - at higher field B,
% | ‘/_,"' or at smaller t,
NS 7 Calculation is

\"4

valid at e, > 41,
Therefore linear MR
o s 100 150 200 250 Iis obtained only at
oc/Ty ~B, . >>1,
| Crossover from square-root to linear field dependence
(observed in many high-Tc superconducting materials)




Result 2

A.l. Coldea et al., PRB 69, 085112 (2004)
3"~ (BEDT - TTF),((Hy0)Fe(Ca04)s|CsHsN
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Comparison with experiments on
interlayer longitudinal MR at finite t,

() M=Fe (A)

R.B. Lyubovskii, S.I. Pesotskii et al.,
JETP 80, 946 (1995) ET4[Hg,Cl,,(C¢H;Cl),]

theoretical prediction: crossover from linear to

square-root field dependence of MRat t, — |/w

I,

C



Result1  Experiments on longitudinal interlayer MRR,(B)  *
(magnetic field dependence: background resistance)

@ | )
g 003 %0 ool ol
c: q 2l _
W// . g
— 42K
] — 10K I
0K
— 40K
) , . —50K . . ) .
0 % "0 20 4 60
B(T) YBaZCugOy B(T) B(T)

FIG. 1. (Color online) Electrical resistivity p. of YBa,Cu;0, for a current / and a magnetic field B along the ¢ axis (ff|| B | ¢). Three
underdoped samples were measured at different temperatures below 7. (as indicated) in pulsed magnetic fields up to 60 T. Thf doping level of
each sample is (a) p = 0.097, (b) p = 0.109, and (c) p = 0.120. Insets: Same data between 10 and 50 K with a fit of each isofherm (thin solid

lines) using a two-band model above the superconducting transition (see Sec. V).

B. Vignolle et al., linear MR transforms
PRB 85, 224524 (2012) ‘0 B2 af lower T ?




Result 1 Comparison with experiments on interlayer MR R,,(B) **
(magnetic field dependence: background and MQO)

a-(BEDT-TTF),KHg(SCN),

200 -

180—- il
160 - l ‘ ‘ l “
Mllx,i'l,x,l,h il
120 - Dirty sample Ll Theoretical
N 100 | prEdiction
) 80 - for the
o0 - LAY averaged MR
40 - _ wYITY ’i'”””” il Rzz(B)NBll2
20 - // Clean sample at t,<<T
0 5 10 BZ [T]‘|5 20 25 30

P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012)

Agreement is excellent, especially in clean sample!
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Interlayer conductivity in the maxima

When chemical potential is in the center of LL, Aes =0

Then equation on SE simplifies Ei [(AE — E*)Q — 4752] — (Fohwc)Q

{
II |II [
Re Z(O)= 0] |I]’HE*| — 1\',"' "u“lf% —+ II]__'”FL;,.;JE.:IE — Ef‘-fj

and the interlayer conductivity
oohw.I'g R 42 — (Af) +3Af|1111TR )‘

27t2 [ ImXF (e

02z (€)

\/Jﬁ (Ae — i [ImER(2)|)2

t Ae=0 in SCBA
2im|§|ifie|2 to 0. (0) = 200/7 forany t,/J@. T, !

but 4t,< hw,




Result MR R,,(B) in the minima of MQO
(magnetic field dependence: background and MQO)

The temperature
dependence of

24

"“I' Red line - background 1 conductivity is
2 MR predicted by new 44 metallic-type:
1.2 - theory 1E .. 7] 100 50 ;ruleumpe?;;re ﬂ;)?u 250 300
_ 11L | EU_(a)h—-:BED_T-rrF_}zc:quc:S}z _
< 10 ] s &
D:H ol & 1
09 Experimental data on 1 = R J |
0.8 k-(BEDT-TTF),Cu(NCS), 1 gy "Wiﬂmﬂ
07L, [W. Kang, private communication] i O eictes
o 5 10 15 20 25 30 35 [W. Kang et al., PRB
Magnetic Field (T) 80, 155102 (2009) |
R.(B—>wx)/R . (B=0)~1.08/0.67=1.6~ /2!

Again a very good agreement of theory with experiment!
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2. R,,(B,) at finite interlayer transfer integral t,
(qualitative arguments)

Contribution to 6, fromone LL at: @, /T, =40>>1
07z(€)/07¢

even at t,=0
the LL width 18 = V@ Lo >>15

4 values of t,: t,/T},=0.1,2,5,10

I Crossover from

hw. /2

/

de

hw. /2 hwc

P (5) ~ O-O

% square-root to linear
v field dependence
5, at 2t ~I's
@,/ 2 i
€/Tg

20

0..(0) ~ 200/
(t. /hw.) x 1/B..
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Conclusions (Part 1)

The standard 3D theory of magnetoresistance (MR) (derived
In the Born or even t-appoximations) is not applicable to
strongly anisotropic layered compounds.

The reduction of dimensionality + magnetic field increase
the effect of impurities, lead to strong longitudinal MR,
change the Dingle plot and angular dependence of MR.

In the limit t; <@ I, <<@. |ongitudinal MR R,, < /B,

In the limit ~/@. 1, <4t, <@, longitudinal MR R, oc B,
and o, oc t> contrary to usual o, oc t?

This dependence is not damped by temperature (if impurity
scattering is stronger than phonon scattering of conducting electrons)

General conclusion: in quasi-2d to calculate MR one
must consider MQO even if they are damped by T.



Technical conclusion on MR calculation R,,(B) in 27
strong magnetic field

1. The approach starting from the 3D strongly-anisotropic dispersion
Is valid even at t, <T,, but the Born approximation is not valid. In the
second order in t, both approaches sum the same set of diagrams.

2. The two-layer approach violates at t, > I'y = (0. )12

N

2D electron gas

VAYAY

H H] + Hf + HI 2D electron gas <. fold B‘
I:ID:ZEQD (1m) « ;;j m,j
Hy = 2t, Z /{-z.n-zy[xp"i(.f. N1 (e, y) + U ()T ()],
e : 1 ) N} \ . j—l X (s 1 L

The Hamlltonlan contams 3 terms _
Magnetic
1. The 2D free electron Hamlltonlan In 2D electron gas
magnetic field summed over all layers:
GZZ\]/
m,j
3. The coherent electron tunneling between any two adjacent layers:
2. The short- range Z Vv,
Impurity potential:

) where V; (r) = U (r — ;)



Part 2: Angular dependence of MR in
strongly anisotropic layered metals

Started in P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011)

Continued in P.D. Grigoriev, T.I. Mogilyuk, to be published



Introduction

Angle-dependent magnetoresistance

oscillations (AMRO) in quasi-2D metals.

R (10° ¢y
ar

N

First observation:

M.V. Kartsovnik, P. A.
Kononovich, V. N.
Laukhin, I. F. Schegoley,
JETP Lett. 48, 541 (1988).

First theory:
K.J. Yamaji,
Phys. Soc.
Jpn. 58, 1520,
(1989).

A
-aQ D 40

3D
o, =etYy v:, v,=0¢/dp,
FS

L L
80 g (degrees)

For axially symmetric dispersion and in the first
order in f, the Shockley tube integral gives:

[R. Yagi et al., J. Phys.

Soc. Jap. 59, 3069 (1990)]

(B % J?(kpdtan 0
O--('_ ):J(Z)(](thdne)+2z ‘]( F__ 2).
U:(_O) r =1 1 —|— (J(})CT)

| A
gives AMRO gives damping of

AMRO by disorder

o, (6)/ o (0)

Fermi surface

1 e

AMRO

0.8

o]
[ap]

=
.
T

=
(&
T

(a) w,z=0.8
(D) wT=1.5
(C) m T= =

\b N\
AR

VAN

=

P

] 3 6 4]
k=d tan &

12 15

Yamaji angles

18
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The two-layer tunneling model

The Hamjltoniqn contgins 3 terms:
H=Hy+ H: + Hy
1 3 2

1. The 2D free electron Hamiltonian in
magnetic field summed over all layers:

Ho = c2p (M) €y iCm g

m,]

N

2D electron gas Magnetic

field B
2"

2D electron gas

T

2D electrongas ¢ Gzzl

3. The coherent electron tunneling between any two adjacent layers:
Hy =2t ) /{'i.m’_ﬁ;[@}(.r. )Vj—1(,y) + T (0, y) T (0, y)],
=

2. The short-range
impurity potential:

ﬁf _ Z Vi (1) where % (7) — 7§ (”I‘ — T};)



Calculation of the angular dependence of MR
[started in P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011) ].

The |mpur|ty averaging on adjacent layers can be done independently:
e’t>d de
A(r r' j.e) (A(r',r, j+1,¢) [—n (e)]
wherethxe spectral functlon A(r,r', J,¢€) —I[G rr, j,e)-Gg(r,r', |, 8)]

In tilted magnetic field B =(B,,0,B,)=(Bsing,0,Bcos8)

the vector potential is A= (0, xB, —zB,,0), the electron wave
functions on adjacent layers acquire the coordinate-dependent phase
difference A(r)=-yB,d =—yBdsing, and the Green’s functions

acquire the phase G.(r,r', j+1,&)=G,(r,r', |, g)exp{le[A() ( )]}

O'_

2e’t°d d , Byd .

The expression o,, = ehz Idzrf8[—nF(e)]{<GR(r,g)>zcos(e y sme)—
. 27 hi/2x

for conductivity

has the form: 3 Re[<GR(r,g)>2 exp( ihe;syd sineﬂ}. GrGA
New term! GyG = o
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Result 2011 Angular dependence of magnetoresistance
in the weakly incoherent regime [ PRB 2011 ]
Result for Lorentzian LL {

shape is very approximate: ¢, = o'O(BZ) [.JO(K‘)] “+ 22 [JV(K)] 2 )},

It modifies for wr>1 . = l+(va)

where x=Kk.dtané, but T dependsonB,: 75 = 70(1“0 /FB)oc 1/. Boosd

and the prefactor acquires N T
the angular dependence: O-O( Z) xﬁ x/— .

B=5T 2 0,(0) |Old result *1/2

QQ.‘35 r "'

9.3‘5‘ ?,", B :1OT

< 030 C 030

New result

0.05 -

l L L L | L | i L L 1 L L |
[ 50 50 ' 50 50

The difference comes from the high harmonic contributions and from the prefactor
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2013a

Angular dependence of harmonic amplitudes

for arbitrary LL shapes
(P.D. Grigoriev, T.I. Mogilyuk)

The angular dependence of interlayer conductivity is given by
a double sum over Landau levels:

T .. ft]'gh_ 2 -
Sk 7 Z Z(n, p)ImG(s,n)ImG(=,n + p).
FDHMC " n,pc”z

= (L0 (22”2 [0 (2

where ¢ = eBdsinf/hc and the Laguerre polynomials

LY (z) =~ atntl) n + - 2 exp (—) Jo | 24/ | n + “ -
n! 2 2 2
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Result Angular dependence of harmonic amplitudes

2013a : :
for Lorentzian and Gaussian LL shapes
(P.D. Grigoriev, T.I. Mogilyuk)

For Lorentzian LL shape:

ol _To Z (—1)F exp (271’3'/%61?) Rp (k) Ry (k)

T fiwe
2 (1 TN N 20 )]
< s (F) {[JO}‘ ! <1 " wc'r) " pZ:l I+ (pwcT)Q } |

k= kpdtan| | z-=z-0(l"0/l_')0C1/1/BCOSH \

For Gaussian LL shape the p=#0 terms are exponentially small at @t >> 1,
which leads to a strong enhancement of AMRO amplitudes.

Angular dependence of MQO amplitudes _ mk m*
o g Rs (k) = cos
IS given not only by the spin-zero factor M. cos 0

Spin current is considerable in strong field!
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Conclusions

Part 1. The standard 3D theory of magnetoresistance (MR)
(derived in the Born or even 1- appoximation) is not
applicable to strongly anisotropic layered compounds.
The reduction of dimensionality + magnetic field increase
the effect of impurities, lead to strong longitudinal MR,
change the Dingle plot and angular dependence of MR.

In the limit T, <@, I), <<@; |ongitudinal MR R,, «< /B,
This dependence is not damped by temperature

In the limit \/@. Iy, <4t, <@, longitudinal MR R, oc B,
and g oc tz3 contrary to usual o, oc t”

Part 2: Angular dependence of MR depends on LL shape.
For Gaussian LL shape AMRO are much stronger. Angular
dependence of MQO harmonics is calculated. Spin current

Thank you for your attention 1.




Motivation Byt no AMRO is predicted in these models,
which contradicts the experiments on R_,(6)
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20 _'“_'-_,\;_ffiki _-}_{____\_\'}_—_’:( f ____}‘_/_{ }f‘[_ﬁ__:h— ol N 100_-
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12—"" e 80 -
' _— ' o] HHll
:]6'{_______% f_g; 0] / \ _mHJ"1‘.r1|||l]l'1,l'1""'”'
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—_ : lH“ 1 “ ) ||'||I ||My*l”'1 FIG. 1. (Color online) (a) Angle-dependent interlayer mag-
E 100 + | _ _,'-'I,,'.u."r.,l".,. J’/\Jﬂ ,ll"l \ I.'I,,I'.”|I,,'.|L_ \t| netoresistance of a relatively dirty sample, 1, of
Q § {ilf!"'f:j "'.\ / '* ﬂ.ﬁp M."'“l /"'\U.-"I VK { a-(BEDT-TTF),KHg(SCN), in the high-pressure metallic state re-
@ @\:‘J/ \"“ VAR, 1 corded at T=1.4 K at magnetic fields (bottom to top): 0.12, 0.5, 3,
104 N ] and 15 T, ¢=~20°. (b) Same for a very clean sample, 2. The upper
8.4 T f,,f—f——é inset illustrates the definition of angles # and ¢; the lower inset:
[ L — l_l_f ... enlarged fragment of the 3 T curve showing a small “coherence
-100 50 0 50 100 peak.” [ PRB 79, 165120 (2009). ]
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Background magnetoresistance in 3D metals (strong field)

In strong magnetic field B (o.,t>>1) magnetoresistance (MR)
depends on the shape and topology of Fermi surface (FS),

but B||J produces no MR. Only B_LJ gives MR.

For closed trajectories

the conductivity tensor

FS, containing

trajectories

open and closed

For open trajectories (open
orbit along x-axis)
the conductivity tensor is

/ "

) Ayy —Ayx — Az
H?2 H H
—=>
O — Ayx Ayy o Azy
H H2 H
AZ.’X‘- Azy 4
H H fhzz
—A
yx
Bxx H Bzx
— Ayx Ayy T Azy
H Hz2 H
A,
y
Az,

A.A. Abrikosov, Fundamentals of the
theory of metals, North-Holland, 1988.



Result 3.

Comparison with experiment on angular

oscillations of magnetoresistance (AMRO)

Theory (qualitative view):

AR N AR R

100

O NN

Old result

I:QZZ

(@)) (0 0]
o
LI

N

o
LI B

o
T T T

I NN

-
-’ .—. - v

| I b \‘ I I I
50 \

new result

P. Moses and R.H. McKenzie,
Phys. Rev. B 60, 7998 (1999).

R, Ohm

R, Ohm

Experiment:
_ “Clean” sample

\/\/\/_\0-5 T
10 0.12 T7]

B :

3T |

35}

30}

25¢

20¢

12}

11t

10¢

o, deg.

’fDirty” sample

B: |
3T

0.12 T1
”"\——/"'—

-100 -50 0 50 100 150

M. Kartsoviik et al.,
PRB 79, 165120 (2009)
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Result2  Generalization of the theory of
interlayer longitudinal MR for finite t,

Aim: extend applicability + explain experiments
Previous two-layer approach gives square-root R,,(B,) and
is applicable at t,<<I’; << hw,
New approach is applicable at T'y~t,< ho/4

8" - (BEDT — TTF),|(Ha0)Fe(Cy04)3]Cs HsN ET4[Hg,Cl,,(CsH:Cl) ]

R, 0

F(¢) M=Fe (A)

A, arb. units

1300

Longitudinal
Interlayer MR
——experiment R_(B,)

1600 ¢

1400 -

1 20 0 = _...,..,...,...,,... o

10000 5I 1I0 1I5 2'0 2I5 3I0
B(T)
A.l. Coldea et al., PRB 69, 085112 (2004)

R.B. Lyubovskii, S.I. Pesotskiim
et al., JETP 80, 946 (1995)
New result: crossover from linear to square-root

field dependence of MR at 2t = \/ w1, <<w,.
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Impurity averaging

) Contain extra _
T 2D electron gas < power of t,/E, Exl

G,, 2D electron gas Q

2D electron gas (

The impurity distributions on two adjacent layers are uncorrelated,
and the vertex corrections are small by the parameter t,/E, =>

o, = 4E Ed Idzrdzr'jg—;[—n'F(g)]<ImG(r,r', j. e (ImG(r,r, j+1,8)),

2z
Xy

Vertex corrections can be ignored

The calculation of interlayer conductivity
reduces to 2D electron Green’s function
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Shubnikov - de Haas oscillations in 3D metals

MQO of conductivity in 3D metals mainly come from the oscillations of
electron mean free time T~1/p(Er). The DoS p(Eg) oscillates because of

Landau level guantization. 3D 2 2
: o, =E¢ ”z Vo,
FS

where in the Born approximation the scattering rate is given by golden Fermi rule:

2n ® eH/c
1/t =T"‘|”|2B dngﬁ(s(n. P —W ]<\ DoS

So, in 3D conductivity is inversely proportional to the DoS,
because oscillations of scattering rate 1/T dominate oscillations of
mean square electron velocity averaged over FS.

In 2D maxima of conductivity coincide with DoS maxima,
because between the LLs there is no electron states to conduct =>
the phase of Shubnikov-de Haas oscillations in 2D and 3D differs by &

=> 2D and 3D cases are not described by the same formula!



Result 1 Comparison with experiments on interlayer MR R ,(B) *
(magnetic field dependence: background and MQO)

a-(BEDT-TTF),KHg(SCN),

200 -

- il

140 - Dirty sample | i Theoretical

prediction for
N 100 - averaged MR:
© wl R,,(B)~B2

60—- |,||JI| ”I‘

40_' ...ww'|'l'Hll"l]””” ”‘

20—~ Clean sample

Bazﬂz [T1f2]
P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012);

Agreement is excellent, especially in clean sample!




The model of incoherent conductivity channel *
[ Phys. Rev. B 79, 165120 (2009) ]

The resistance through each hopping
0

!) E . - .
? 11/? l center contains two In-series elements:
. A/
1 2% _
i RJ_ — Rhc -+ R” .

The hopping-center resistance Rhc IS almost independent of magnetic
field and has nonmetallic temperature dependence.

The in-plane resistance R” depends on the magnetic field L to the

conducting layers, and has the metallic temperature dependence. It
can be calculated in the limit when the concentration of hopping

centers N, =1/I.3is much less than the concentration of normal

impurities N_=1/1 2. Then the resistance R” is determined by the in-
lane conductivity:
P » R=EIn( ) o d.

The total incoherent part of conductivity:
£ y ’7T()'Hnl'd3

O'” depends on magnetic field L layers ;= .
and has metallic T-dependence. mdoRy. + In(l;/1;)



Another experimental indication
of the 3D -> quasi-2D crossover when
LL separation becomes greater than t,

Landau level shape and harmonic damping
of MQO can answer if electron dynamics is
2D or 3D in particular compounds

P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher,
Phys. Rev. B 86, 165125 (2012)
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Approach 1 to solve of the problem 46

Calculation of interlayer conductivity in the
weakly coherent regime [PRB 83, 245129 (2011)]

A The interlayer transfer integral £,<<I, is the
T 2D electron gas < smallest parameter. We take it into account in the

lowest order (after the magnetic field and impurity
potential are included as accurately as possible).

Interlayer conductivity is calculated as the
l tunneling between two adjacent layers using
the Kubo formula:

G,, 2D electron gas Q

2D electron gas

e’t’d
O-ZZ=
L L

<Id2rd 2r'jg—;4lm Ge(r,r', J,&)ImGL(r',r, | +l,a)[— n'F(a)]>,

where the Green’s function G.(r,r', J,&)
Includes magnetic field and impurity scattering.

Conductivity (the linear response to t i
external electric field) is again ; Z
calculated from the Kubo formula:
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New features of MQO of conductivity in Q2D
appear already in the first order in hw_/ 4xt, <<1

Phase shift of beats Slow oscillations of MR
._I. eal | ' ' '
02b Eee “HvA1B-(BEDT-TTF)IBr,
£ ]
i I5
‘Jl:n:- | il
2 4 &8 & 10
0.0k F1000 [T]
& h =
: -
£ E
i 0.2 F . 3
% e
E [E— |
g
4T 8T 1
H:-'.'I
Enoco [
sl 1 1 e i i | 2
o8 = 8 10 12 14 16
8 [T]

P.D. Grigoriev et al., Phys. Rev. B 65, 60403(R) (2002). Phys. Rev. Lett. 89, 126802 (2002);
Rigorous calculation is performed in P.D. Grigoriev, PRB 67, 144401 (2003).
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When B_£ J, strong MR R_,(B, ) is not surprising

Only longitudinal magnetoresistance is strange

: Ap /p.
The transverse magnetoresistance |~ 4./
. . 0 F
R,,(B,) can be quadratic, linear, linear
_ regime

100 =

J

[A.F. Ho, A.J. Schofield,
arXiv:cond-mat/0211675; LF
A.J. Schofield and J.R.
Cooper, Phys. Rev. B 62, o e
10779 (2000); .. ] w0' b/ / /

1
(L0000 (L0001

.01

J.[J'lflmh

or even R, (B,)~B,?
as in graphen |

resistivity

[L.A. Falkovsky, Phys.
Rev. B 75, 033409 (2007)]

o 100 200 300 400 500 600
magnetic field {hD}
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Previous theoretical results on Shubnikov -
de Haas effect in quasi-2D metals (3)

V. M. Gvozdikov, PRB 76, 235125 (2007) Ji
Title: Incoherence, metal-to-insulator transition, 2D electron gas (
and magnetic quantum oscillations of interlayer

resistance in an organic conductor 2D electron gas &

Variable-range hopping model
for interlayer electron transport ¢ ATy/T) = o (0)exp(—=NTy/T).

To explain the particular [To \/IB By|” ( B — Bo|)”/2
experiment he also assumed T - TV

. Ry,

o 25

15
4t

Butinfactno
VRH in Q2D .
1 2 3 4 5 componds 0 05 1 15 2 25 3

—— - ] —— -
s
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Do any new features in the theory of
angular and field dependence of MR appear
as we go from 3D to quasi-2D limit?

Generally accepted opinion [P. Moses and R. H. McKenzie, PRB 60, 7998 (1999)]
that during coherent-weakly incoherent crossover ( t,< I', ) no changes.

This conclusion is incorrect.
It is based on oversimplified model for the interaction with impurities:
Born approximation + neglect of MQO => constant electron self energy)

They have used the following G.(n, &)= 1 | disorder
2D electron Green’s function 8—82[)(”, K )— T e wrong

In PRB 83, 245129 (2011) | have shown, that

In strong magnetic field, when I'y < hw _~ t,, MQO produce monotonic
(background) MR, leading to strong longitudinal MR for B_Llayers. This
changes the angular dependence of MR and reduces AMRO amplitude.



The 2D electron Green’s function with disorder in B, >

The point-like impurities are included in the 0 o 0

“non-crossing” approximation which gives: T “
G(r,,r,,€)= Z k (r,) ¥ S, (r, )G(&' n) _1 . i ....1____|_ i 1 L
where

E+E 1-c, E-E.N\E-E Tsunea Ando, J. Phys.
Gr(E.n)= o )ZE/(E X ) , | Soc. Jpn. 36, 1521 (1974)

£, =E,(/c, -1f, E, _E(XF+1)2 E, =V, /2713 B, ¢=27I5N,=N,/N,.

The density of states on each Landau level has the dome-like shape:

Im G (E) /(E E,)(E, - E) D(E) : Density of states

— R _ V\= ™1 2
D(E)= - > TETE , | c,>1

! %
Landau level width /[‘/+\

Bare LL /
[} = (E2 — El)/2= 2ngﬁoc x@_ Broadened LL

In strong magnetic field the effective electron I'; 4w,
level width is much larger than without field: | - \|\ 7T,

v[Tl

>>1



52

Four-site approximation

Tsunea Ando, J. Phys. Soc. Japan 37, 622 (1974)].

Diagrams with intersections of impurity lines:

AAAA A;\ /\

R R XN /\u( )u/\r
£ XX\ (b) \ 1 5 &
\) N \
R0 AOKY DRL QKL AR A0
/ N IV\ \

/\A/\ I\A’\/\ ANAAA N A
IYOK A AA IAVAV \ ,A\

{/ X/E Il}\/\\ / /{‘A\ \\ I’ /))Y K\ \\ l,/;\(dv \> Il}/\ E\
AAAA A I\ A A AA AA N A
I\'I \‘I \ { \\ / \k ‘ \\ // EEA\ \\ : ij C’\‘

NA A

’,AX,/\,\Aa/\: ’\ ,‘\ A<!/\ / )OXV \ / )\/\( \
Fig. 9. The self-energies in the 4SA.

10 — T

I
— E=05 ¥=125

- E=10  1=10 (GAUSSIAN)
—— £=00 7=00 (SCBA)

2ni2 I D(E)

EIT

Fig. 7. The density of states of the ground
Landau level. The solid line is the present
result, the broken line is that in the SCBA,
and the dotted line is the Gaussian density of
states. The present result is something like
an average of the Gaussian density of states
and that in the SCBA.



The shape of LLs is not as important as their width! >

The inclusion of diagrams with intersection of impurity lines in 2D
electron layer with disorder only gives the tails of the DoS dome.
The width of this dome remains unchanged and ~B.,'2:

z

DE)T 1 DoS D(E) DoS
|
| c.>1 c.>1
/I | a
DN« - ;

4 7 " /
bare LL  proadened LL bare LL  proadened LL

The conductivity is not sensitive to the shape of LLs,
but strongly depends on their width. T./z

. DIE )=~ .
Therefore, we can take the DoS: ) E2 +1“§

1/4 : :
where T ~T [(4a)c |xT, )2 + 1] arlld Iy is the ele.ctr_on level width
without magnetic flel(_jL

The corresponding Green’s function is Cr(n. &)= g—gZD(n, ky)— i,

which gives o = 0,7 T,/ 4a, ~0.890,,T,/w, =0.630,/ Jw,, <1/,/B,.
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“etl’?  Monotonic part of conductivity for B || z

The averaging over impurities on two adjacent layers is not correlated
— 70l 0w,
For B - BZ we get Oyr — 70 o™ / ?IF Z |Illl(:r

In weak magnetic field this gives o.. (B) = 0ol'o/ \Imz (1. B)|

Substituting Green’s functions in the various approximations gives the
monotonic part of interlayer conductivity [P.D.Grigoriev, JETP Lett. 94, 47 (2011)]

E2 2(7{]r0 1"_(? 1f(T—|—l
P 0., (E)dE /hw, = { ‘ ( ) «.Hr'i] .
[1:71 { Tk, 2 Ve — 1

where C =271’ N.=N./N, and T,=zCE/a,.

2000 | 41 / /
When ¢; > 1, this simplifies to .. 0070 0 ~0, |—+1.13cx
Eg*\,ﬂ' i i_w,c

— 1.06
In the SC Born approximation o, =0 ~O 015~ %
o 0\/ 3f 0\/ Joz,




Result 1 Comparison with experiments on interlayer MR R ,(B) *°
(magnetic field dependence: background and MQO)

The temperature
dependence of

"' Red line - background - conductivity is
2 MR predicted by new 44 | metallic-type:
12| theory B S S o N
11 i e THIEE R A R R R i EU_(a);;fio_rﬁrbr;;ﬁc:utNCS}z »
a ! r-osk
N | 1 31w HMMI&”
0.9 Experimental data on 1 . P-ﬁ-ﬁ’i”rhf"'\“f- | 1
0.8 k-(BEDT-TTF),Cu(NCS), | gl --WHWF%
0.7 [W. Kang, private communication] i S-S
L L b L W. Kang et al., PRB 80,
0 ) 10 15 20 25 30 35 255102%2009)]

Magnetic Field (T)



Result 1 Comparison with experiments on interlayer MR R ,(B) *°
(magnetic field dependence: background and MQO)

MR growth appears also at larget, ~T', as in B-(BEDT-TTF),IBr,

Plans for future:
study MRatt,~T

B-(BEDT-TTF),IBr,
5 1 L | i | L
1 . L | ! 1 ' | v | ' | v |

N =
PRL 89, 126802 (2002);

L l i | i | | 1 L]
T ] T

| Beautiful effect: Both slow oscillations and background
MR originate from MQO but survive at much higher T



Result 1 20

Comparison with experiments on interlayer MR R,,(B)
(magnetic field dependence: background and MQO)

measured field dependence of predicted field dependence

magnetoresistance in | of non-oscillating part of
§" = (BEDT - TTF)y((H;0)Fe(C504)s]C Hs N magnetoresistance
A.l. Coldea et al., PRB 69, 085112 (2004)

(c) M=Fe (A)
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Result 1 Comparison with experiments on interlayer MR R,,(B) *°

uh (=21
o prpnnrnn sl orennnppabowonrnnaedopnnpannel eoonnnnnuloionpanraluing

s

L]

LELLl 'l.:l

(magnetic field dependence: background and MQO)

Longitudinal MR crossover from linear to square-root at t, ~,

ETg[Hg,Cl1,(CsHsCl) 5]
R.B. Lyubovskii, S.I. Pesotskii et
al., JETP 80 (5), 946 (1995)

long range

of linear MR




Result 1 Comparison with experiments on interlayer MR R,,(B) °’
(magnetic field dependence: background resistance)

MR growth crossover from linear to square-root at t, ~,

© L sco "
e - p 0113 K Lay 975r,03CUO,

l.Raicevié¢, D.Popovic et al.,
PRB 81, 235104 (2010)

linear MR transforms
to B2 at higher field




Interlayer
magnetoresistance
in Fe-based high-Tc

superconductors

Usually attributed to the field-induced i |

spin-density wave (FISDW ) state with
partially gapped FS, but it is not

correct because FISDW with T, >100K
require much stronger magnetic field

SrFe2A32

60
BaFe,As,

T= 2K

2 }fr - Tt ol IE
nfF n
B o F
—a SrFegfss :'
i ks )
T=10

Fig. 2.

200K, (BT

But it agrees with the proposed theory :« tateate: (eh) ()T

100K, (d) T

100K, (c) T

..'-I-!i"-'l]i"tli.lfl!‘i-iih[i'-.'it:‘.' of SrFeqAss (left): (a) T

BOK, and (d) T 101,
K, ()T =210K, (c)

:-[] K. and (e} T = 10K for the fields

Of |Ong|tUd|na| MR IN quaSI 2D metals .::«.L:] arimuths of & = 0% and 30° with respect to the ¢

Chin. Phys. Lett. 26(10) 107401 (2009);
Chen G F, Li Z et al 2008 Phys. Rev. B 78 224512



Two-layer theory, predicting
the square-root MR R,,(B,),

is applicable at t,<<I’y << ho.

What happens at larger t,, or at smaller B,?
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Damping of MQO for various LL shapes in 2D

The Dingle factor depends B (k [ ik
on the LL DoS D(E) as p (k) ,,T/ exp

) D (E)[dE

hw c

o — DD

Possible damping laws for MQO harmonics:

For Lorentzian LL shape and I" independent of B one obtains
standard Dingle factor: R . (k) = exp (—const - k/B.)

For Lorentzian LL shape and I” ~ B2 RE - (k ( 4 I )
) =exp (—const - k/\/B
(as for short-range disorder in 2D): pr, (k) b / :

For Gaussian LL shape and I" independent of B (long-range
disorder in 2D): Rpc (k) = \/T/Qexp [—const . kg/Bg]

For Gaussian LL shape and I” ~ B2 (short-range disorder in 2D):

Ry (k) = \/7/2exp [—const - k*/B.]



We take the same compound where there was excellent
agreement on field-dependence of interlayer MR R,,(B)

200 -
180
160
140
120

N 100

80

60

40

20 =

—

0

a-(BEDT-TTF),KHg(SCN),

Dirty sample Ul.'-uf |

il
lllllll i ['u']"'['! l IW' "|

Clean sample
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Theoretical
prediction for
averaged MR:

Rzz(B)mBll2

1

T
2

B3 112 [T'”Z] >
Z

P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012)



Result2  Fje|d-dependence of MQO amplitude in
layered organic metal a-(BEDT-TTF),KHg(SCN),

5 g s
=] LT Small MQO
T .- E amplitude =>
€ e large error
8 o é)

0.04 0.08 1{;?!:_1 0-10 0.12 0.000 0.002 0.004 DDDI:::”B?D,?:BZ 0.010 0.012 0.014
The Dingle plot, i.e. the logarithm of The modified Dingle plot: the logarithmic
the amplitude of the first harmonic of plot of the amplitude of the first harmonic
MQO divided by the temperature of MQO divided by the temperature
damping factor R;, plotted as function damping factor R; as function of the
of the inverse magnetic field 1/B. inverse magnetic field squared 1/B2.

This corresponds to
: 2/ 2
Gaussian LL shape => fipc (k) =~/m/2exp [‘COnSt -k /Bz]



Damping of higher harmonics of MQO
In a-(BEDT-TTF),KHg(SCN),

07 FFT at 24T<B<28T

)

=]

= -1-

=

3_ 4

£ ..

L

s
-3 4

E

s 1st

o 4- '

3 harmonic ond
-5 : :

0 1000 2000

MQO frequency (T)

Rpa (k) = /m/2exp [—const : kg/Bf]

This is in strong contrast to 3D Dingle law but agrees with 2D DoS'!

Calculation shows,
that observed
harmonic damping
obeys that for
Gaussian LL shape
and I" independent
of B (long-range
disorder in 2D)

[P.D. Grigoriev, M.V. Kartsovnik,

65

W. Biberacher, arXiv:1205.0041]:

P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012)
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Conclusions from comparison with experiment

1. In strongly anisotropic layered metals the standard 3D theory of
MR is not valid. The new quasi-2D weakly coherent regime
show up by appearance of strong longitudinal interlayer MR,
originating from MQO but surviving at much higher temperature.

2. The electron dynamics in this regime is indeed closer to 2D than
to 3D, as derived also from analysis of MQO, Dingle plot,
harmonic damping and LL shape.

3. The main qualitative features of the proposed theory of MR in
new weakly coherent regime (growth of MR, damping of MQO)
agree with experiment.

The field-induced dimensional crossover of MR is proposed

P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012)
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Further work

Above analysis is only the first step in the theory of MR in layered metals

second

There is still much work to do: part of

the talk
¥_1. _New accurate calculation of the angular dependence of MR_"_ _|_"
¥ 2. _Change of angular dependence of harmonic amplitudes of MQQJ_ .
¥_3. _The crossover 2D --> quasi-2D --> 3D (t,~T) __________¥
V¥ 4. Very high field, when the growth of R,,(B) is faster than ~B"2. Yy

15. The crossover weak --> strong magnetic field (o ~ I'y).
6. Influence of chemical potential oscillations and electron reservoir.
7. Quasi-1D anisotropic metals.
Probably, due to Coulomb anomaly in

compounds with low electron density

v - currently studied by P.G. and (hopefully) solved in the simplest model
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Conclusions

The standard 3D theory of magnetoresistance (MR) is not
applicable to strongly anisotropic layered compounds.

In one-electron approach the reduction of dimensionality
+ magnetic field increase the effect of impurities, leading
to strong longitudinal MR and changes in the Dingle plot
and angular dependence of MR.

The e-e interaction may additionally suppress interlayer

conductivity, leading to the magnetic-field dependent
Coulomb blockade => strong magnetoresistance.

Thank you for attention!
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[1] P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).
[2] P. D. Grigoriev, JETP Lett. 94, 48 (2011) [arXiv:1104.5122].

1. Longitudinal interlayer
magnetoresistance (MR)
grows with B, at ®.T > 1: R (B
R,, ~ B,2. It grows even if\ 2 (B;) Q
MQO are damped by T or o ﬂ

by long-range disorder.

RZZ

Theory

2. B,-dependence of MQO 3

-y
L ----------
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Recent theoretical predictions for interlayer MR R, ,(B)

.
amplitude changes. The 1Old :M .U
Dingle low Rp=exp(-By/B,) Lasanna :
is not valid (as in 2D case a TR, '
( ) il "“““”':-w"'t'l".",""l'all‘J‘:\"."" Y 'Jl 'al :,' l, '
3. Angular dependence of T 0
MR changes: both the —1/4

5.. (B) ~ oo [(zwﬂf + 1}

monotonic part and the
amplitude of AMRO.

The coefficient 2 slightly depends on the LL shape
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Applicability of Kubo formula

If electronic states in the layers are localized, the discrete

electron energy spectrum with level separation 8~h?/mé&?
may violate the Kubo formula when 6>~T, h/7, t,.

Localization length of 2D electrons in magnetic field [Bodo Huckestein,
RMP 67, 357 (1995)] E~ R, eXp(W2 gg

where the

Larmor radius 1t = ﬁkFC/BB — ]‘fFZ?{ — (QNLL + 1) /]fFa
and dimensionless go = (h/€2) Oy R (QNLL 1 1) /ﬂ_

conductivity

2
Hence the localization length & ~ R, eXp{(ZNLL +1) }
where N is the number of filled Landau levels; usually N, | >> 1.

In organic metals for highest available fields N, >10 (usually N, ~100)

No electron localization at N, >> 1 and Kubo formula works!
Because T, h/z, t, >> [, /(2N +1)] exp[- (2N  +1)? ]!




Physical reason for the increase of interlayer
resistivity in high magnetic field

Rough explanation: low dimensionality + strong magnetic field enhance

the effective interaction with impurities and the mean scattering rate 1/t

=> increase of resistivity accordingto 5, . ezr<v 2> o(E.)
2z Z £s F

The impurity distributions on adjacent

Another explanation: layers are different. When an electron

p— tunnels between two layers, its in-plane
1 © - lBZ wave function does not change, but the
, (") - energy shift due to impurities differs by

the LL width I, ~ (I, @;)"? ~ B,"?

Why I, ~ B,"2 ? Because the area where ¥,=0, approximately, S ~1/B,,
and the number of effectively interacting with the electron impurities
¢c,~ SN, ~1/B, fluctuates as ¢;,"? ~ B, 2, => the average shift of electron
energy due to impurities W=SN,V, fluctuates as W/c,"? ~(SN)"?V~ B,"2
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To calculate the in-plane Green’s function o o .
one can use the non-crossing approximation |T A A

with short-range impurity scattering. S|4 i N :

Just Born approximation gives qualitatively wrong result (no B, dependence of R,,).
Self-consistent Born approximation is much better and only gives a wrong factor ~1.

Why the non-crossing approximation is applicable?
Why only the short-range impurities are included?

In 2D in magnetic field the center of electron Larmor orbit drifts along
the equipotential lines of long-range disorder (hills and valleys). This
gives QHE, mobility edges, etc.

In quasi-2D metals the long-time 2D electron dynamics is
cut-off by the new time scale of interlayer electron hopping

h/t,, therefore the QHE has not been observed in layered
guasi-2D compounds
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Is inelastic scattering time necessary for this calculation?

As we restrict to only two layers, without coherent tunneling to next
L .
layer, do we need the condition 7,<7," ] Magnetic

2D electron gas &, field B‘

The Hamiltonian of the model contains 3 terms:

[A{ — IjIO + Ij]t + Ijjl 2D electron gas <V o'zzl
1 2 '

3

. . . - - + _
1. The 2D free electron Hamiltonianin  H, = Z cop (M) ¢y cm ;.
magnetic field summed over all layers: —

3. The coherent electron tunneling between any two adjacent layers:
Hy =2ty /{-z.m-zy[np}(.f. )Vj_1(,y) + UL (0, y) T (w0, y)],
=

2. The short-range 7y _ V. () Where V. () = US> (1 — 1.
impurity potential: ! ; i (7) i (1) ( i)
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AMRO do not require 3D Fermi surface , but only
a coherent (momentum conserving) interlayer tunneling

vonian FT — F 4 4 E ]
Hamiltonian H — HO T Ht - HI 2D electron gas (

with 2D free electrons in magnetic field

summed over all layers: 2D electron gas (x
T § : i, +
Hy = oD (m) m.iCm.j 2D electrongas €
m,j

and the coherent electron tunneling between any two adjacent layers:
H; = 2t. Z/fmz Ul (o, y)Tyo1 (e y) + O (0, y) T (e, )]

gives AMRO due to the overlap of electron wave functions, because they

shift in tilted magnetic field for different layers j:
ikyy Y. Kurihara,
Wty y) = W (o = Ly [k + jd/ 1, ])e™ \[J.Phys.Soc.Jpn.

where magnetic length I, = \/fic/eH, 61,975 (1992)]




Landau level broadening in 2D case

depends on the range of impurities

For a white-noise or Gaussian correlator of the impurity potential U (r):
Q(r) = (U (0)U (r)) o exp (—r*/2d?)
exp(— g’ 12T, 2)

one obtains dome-like (“non-crossing” approx.) D(g): _
and Gaussian LL shape (in better approx.): 2zl "N 27T

| | A k212 - k212 2 d2k
withthe i Qgexp (=) [ L (“3) ' ke

fr2 r2 2 d*r
zgo(r)e"p(‘"zzg)[LN(zzﬁ)] 2y
and Ly 1s a Laguerre polynomial

For along-range impurity potential, when d<<l, the LL width T is
iIndependent of B (but may depend on LL number N),

while for short-range disorder in strong field @,z>>1

the LL width T~ \/g as in the “non-crossing” approximation.

[ I.V. Kukushkin, S.V. Meshkov and V.B. Timifeev, Sov.Phys. Usp. 31, 511 (1988) ]



Landau level shape in 2D

The LL shape in 2D depends on theoretical model

i i) ¥

For point-like impurities in the “non-crossing” A A
approximation gives dome-like LL shape ¥ :1 vl N4/ L
[Tsunea Ando, J. Phys. Soc. thn. 36, 15?1 (1974)]: DE) 1 1 Density of states
D(E)=_ImGR(E)= \/(E_El)(EZ_E)’ : Ci >1

4 27 E E, 9
Landau level width /A/f\ E
I; = (E2 - El)/ 2=2E, \E o« -/B. s Broadened LL

For a white-noise or Gaussian correlator of the impurity potential U (r):

Q(r) = (U (0)U (r)) x exp (—r°/2d°)
one obtains Gaussian shape of the Landau levels [see review In
l.V. Kukushkin, S.V. Meshkov and V.B. Timifeev, Sov.Phys. Usp. 31, 511 (1988).]

‘Any case, in 2D the LL shape is not Lorentzian !




Why result of [E. Brezin, D.l. Gross, C. ltzykson. Nucl.
Phys. B 235, 24 (1984)] is applicable only for lowest LL

The lowest Landau level is spanned by the orthogonal set of functions [3]
o m(r) = (27 wmt) 2 (x4 ) exp(~ dk2(x2 1)), (m=0,1,..),

(6a)

i (6b)

K

eB
-

Introducing the complex variable z = x + 1y, one can thus express the condition that

a state @(r) belongs to the@ subspace (i.e. is an arbitrary square-integrable
linear combination of the u ,) as the condition

o(x, y)=e " u(z), (7)
in which u#(z) is an holomorphic function [4], namely

2 u(z) =0, (8)
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Summary (part )

A dimensional crossover and the new regime of electron transport in
layered metals is proposed, when the interlayer tunneling time is longer
than the cyclotron period. In this regime the effect of impurities is much
stronger than in standard 3D theory. This qualitatively changes the
angular and field dependence of magnetoresistance:

1. The background interlayer MR grows ~B'2 with increasing field B||o.

2. The Dingle temperature grows ~B'2 + contains the terms from long-
range disorder. This leads to the stronger damping of MQO.

3. The angular dependence of MR changes: additional (cos0)2 factor
appears and the AMRO are weaker.

The predictions of new theory nicely agree with experiment

Publications:
[1] P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).

[2] P. D. Grigoriev, JETP Lett. 94, 48 (2011) [arXiv:1104.5122].
[3] P.D. Grigoriev, Low Temp. Phys./Fiz. Nizk. Temp. 37, 738 (2011).
[4] P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012)
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Details of the analysis of harmonic damping

For the Lorentzian LL shape with field-independent
I' ~ 11K one obtains from Eq. (9) at B, = 227 the
Dingle factors Rpr (1) =~ 0.017 and Rpr, (2) ~ 0.00028.
The predicted harmonic amplitudes for the Lorentzian
LL shape are A1y = Rpr (1) Rr (1) Ry = 0.017 % 0.64 *
0.852 = 0.0093 and Ao = Rpr (2) Rt (2) Re2 ~ 0.00028x
0.22 % 0.453 = 0.000028, which by orders of magnitude
differs from the experimental values A, =~ 0.3 and
Aoer =~ 0.002. The smaller value I' =~ 7K obtained for
Gaussian LL shape gives the Dingles factors Rpp (1) ~
0.074 and Rpr (2) =~ 0.0055, and the harmonic amplitude
A1t = Rpr (1) Rt (1) Re1 =~ 0.074x0.64x0.852 = 0.04 and
As; = Rpr (2) Rt (2) Rea = 0.0055x0.22x0.453 = 0.0005,
which still very strongly differs from the experimental
data. Thus the observed harmonic damping cannot be ex-
plained by the traditional 3D Dingle factor, correspond-
ing to the Lorentzian LL shape.

For the Gaussian LL shape with field-independent I" ~
7K one obtains from Eq. (12) at B, = 227 the Din-
gle factors Rpa (1) =~ 0.45 and Rpg (2) ~ 0.02. Then
the calculated harmonic amplitudes for the Gaussian LL
shape are A1t = Rpa (1) Rr (1) Re1 ~ 0.45%0.64x0.852 =
0.25 and Aot = Rpa (2) R (2) Rea = 0.02%0.22x0.453 =
0.002. which nicely agrees the experimental values Ao, ~
0.3 and Ase, = 0.002. This analysis gives additional

sC

In[o,,*Bsinh(14.7* Tu/B)]

Rpy, (k) = exp (—27kl' /hw,.)

9.0
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Introduction

Green’s function (coherent limit)

If the energy levels €, and wave functions ¥, TO*(r )TO (r,)
of quantum states m are known , the Green’s G (1,1, &)= Z :
function writes down as - &—&,—10

One cannot find exactly the electron energy levels and Green’s
functions of macroscopic system with impurity scattering.

Therefore, one applies the perturbation theory, with averaging over
disorder. Then, in the Born approximation, impurity scattering leads to
the energy-dependent imaginary part of electron self energy.

Green’s function in quasi-2D metals (coherent limit)

(o ik (zl—zz)

Ga(r,h, j,8)= ), Fr. (Xar ) Fr 0 V) impurity
e e— eZD(n k )+ 2t cos(k,d)—il(s, B):— effect

where ¥ — are the wave functions of 2D electrons in magnetic

field, and the level broadening I" oscillates as function of energy

¢ and magnetic field around the field- mdependent value I'y~7I271,,
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being proportional to the density of states. IncorreCt in the weakly

incoherent limit




Applicability of Kubo formula

If electronic states in the layers are localized, the discrete

electron energy spectrum with level separation 8~h?/mé&?
may violate the Kubo formula when 6>~T, h/7, t,.

Localization length of 2D electrons in magnetic field [Bodo Huckestein,
RMP 67, 357 (1995)] E~ R, eXp(W2 gg

where the

Larmor radius 1t = ﬁkFC/BB — ]‘fFZ?{ — (QNLL + 1) /]fFa
and dimensionless go = (h/€2) Oy R (QNLL 1 1) /ﬂ_

conductivity

2
Hence the localization length & ~ R, eXp{(ZNLL +1) }
where N is the number of filled Landau levels; usually N, | >> 1.

In organic metals for highest available fields N, >10 (usually N, ~100)

No electron localization at N, >> 1 and Kubo formula works!
Because T, h/z, t, >> [@. /(2N +1)] exp[- (2N, +1)? ]!




Landau level broadening in 2D case

depends on the range of impurities

For a white-noise or Gaussian correlator of the impurity potential U (r):
Q(r) = (U (0)U (r)) o exp (—r*/2d?)
exp(— g’ 12T, 2)

one obtains dome-like (“non-crossing” approx.) D(g): _
and Gaussian LL shape (in better approx.): 2zl "N 27T

| | A k212 - k212 2 d2k
withthe i Qgexp (=) [ L (“3) ' ke

fr2 r2 2 d*r
zgo(r)e"p(‘"zzg)[LN(zzﬁ)] 2y
and Ly 1s a Laguerre polynomial

For along-range impurity potential, when d<<l, the LL width T is
iIndependent of B (but may depend on LL number N),

while for short-range disorder in strong field @;7>>1

the LL width T o \/g as in the “non-crossing” approximation.



The exactly solvable models, applicable to
the lowest LL, prove Gaussian LL shape

2 & 2, — ¥’ _.1_ _
e E 2ol e o

[ E. Brezin, D.I. Gross, C. ltzykson. Nucl. Phys. B 235, 24 (1984) ]

v __ NhimpZ21 . T I
g E g % where h== B=—
— Sy (f In —u), 0< — «e Ufa
D(E) Ly L Ey _
—— = I e 1/f o £ o1 1S Burmistrov, M.A. Skvortsov,
g E ) Eo " JETP Lett. 78, 156 (2003)
2 2E E? ,
o W




Result2.  Magnetic quantum oscillations of
conductivity in the weakly coherent regime

MQO of interlayer conductivity:

) Ry 27(iku) | 2k72’T/w,
O-ZZ—O-O(B)k;oo( 1) QX{ ) i|S|n}{2kﬂ2T/wc)

C

backgrognzd MR where 1o ¥ l Dingle factor
®
) AL V9 o [ J +1 +l"LRochz.
Te /B 71y o omikE ,
and the Dingle factor depends on LL shape: fip (k) = — /_ exp ( ) D(E)|"dE

hw,

Comparison of the results on R,, of standard theory (coherent regime)

and new theory (weakly incoherent) : amplitude of MQO reduces because
i Rz the Dingle temperature increases
.. background MR [ .

. _withfield — girannn
grows with B, New result YT ” ﬂ i

15 |-

o

. (Result1) TH E Gt

s L g@)om result i

VT e SRR R B R R N S | U U J
SR . S s B
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Landau level shape and harmonic damping in 3D

In 3D the electron Green’s function has the form

W0 (X Y B, (%, e )
Go(r1r1j’5)= L ), , impurit
i ng;kz 5 53D(” ky’kz) Zq(¢,B) Iefflggtly

This corresponds to the Lorentzian shape of electron levels:
ImZ (&)
[e-2(n.k, .k )-Rez (&) F +[Im 2. (e)T

ImG (nk K, .9)

In M

that gives exponential Dingle factor ‘ tgp=>T
of MQO: P
-2z k|ImZ.(e)
R, (k,&)=exp . b

a)C

(k- harmonic number) \

1/H




Introduction

86
Calculation of conductivity in metals

(standard theory, coherent 3D case)

Conductivity (the linear response to external electric field)

IS calculated from the Kubo formula: @

02 =8 X VM S 2ImG (m )T (e)],

where m=(n, k, k, ), the electron velocity v, (&,n) =0&/dkK,,
Is determined by the 3D electron dispersion,

G (m, &) - retarded electron Green’s function, where scattering by
impurities is taken in the lowest order (Born approx.),

N (€) = —1/{4T cosh?[(e— u) 1 2T |}

- derivative of the Fermi distribution function.



Introduction

Evaluation of the Kubo formula

We now substitute  Im G, (m, &) = Im2, ()

Change integration variable (k, > €’):

=e’N, R

0 21m Gy (& &)1 (&)]
27
where V,(g,n)=0¢e/0kK, = d\/4t2 —[g—wc(n+1/ 2)]2

Applying Poisson summation formula after integrations we get

o, =N, [ n’ (5)]2( —1)" th (47::(’[])(

Cc

y 1 +27zk ex 2mKe R, (K. &),
ImZ.(¢) o, o,

—2zKImX
where the Dingle factor R (K, &) = GX{ 4 R (8)] .
a

C

[e—e(Mm)-ReZ,(&)f +[Im=Z.(&)f
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Evaluation of the Kubo formula (2)

X
Scattering on point-like impurities in : 2
self-consistent Born approximation: = Lt N

>R (m, &) = <ZU ‘G(r,r, g)> =>%(e)=CU Zj d°rG(r,r, &)

We assume the harmonic _ d \
damping is strong and Oz = O'oj gl-n": (&)]x
keep only first harmonics - 4 5 N
in the expression for amt t TE
. 1- fCJ CcOoS R, (&)
conductivity: t . . D
X

+
x*
1-2J (4ﬂt]c03(2”8 ]RD(g)
wC a)C
This term cannot -

be obtained from 2 K T, At 2re*
the Boltzmann —+ J,| — |cos R, (&)
transport equation t @, a

C
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Observable consequences

For 47t >>hiw, the expression for conductivity simplifies:

o, (1+a°) T U At &« tot
COS 0S -+ R. R+
| 2x’t ( ) J (a)C 4 7bj S

C
At & :
n ; R[Z)x/1+ asz COS 2( _ . +¢s ]j|’ Phase shift of beats

2t @

C

where the phase shift of beats

Slow oscillations
¢, =arctan(a), a= ch [1+ 7[]

.T
and
¢, =arctan(a;), a. =@,/ 2xt.

27z' KT /o,
~ sinh(27? kT/a))

The temperature damping factor R
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Coherent and incoherent interlayer electron transport

o G as <A The coherent regime gives the well-defined 3D
electron dispersion g(p)=¢ ,(p,) +2t, cos(k,d) and
£ Fermi surface as a warped cylinder. It assumes
t_t>>h, where 1 is the in-plane mean free time.

oDelectrongas ¢ J1heory of magnetoresistance in coherent
regime is developed and works well.

2D electron gas

“Weakly incoherent” interlayer magnetotransport:

p, is conserved in interlayer tunneling, but the tunneling time is longer than
the cyclotron and/or mean free times. The 3D FS and electron dispersion are
smeared. Examples - all layered metals with small t, in strong magnetic field:
organic metals, heterostructures, high-Tc cuprates, pnictides, intercalated graphite.
Are the standard formulas for magnetoresistance applicable
in this case? Does this regime contains new physics?
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MQO in the weakly incoherent regime (B,||0,,)

Theory [T. Champel and V. P. Experiment
Mineev, PRB 66, 195111 (2002)]
300 @
o =or A 47 mK
‘ 80 mK
218 mK

455 mK

A Y oo
AN A A/ ook
B ‘ f -‘-._A“-.f"\/ \4
o a‘nle“é'.._ ',-A. VA
)j| X Y ' : : : ' I 1I4 1'6 1.8 J
H(T)

2kz°T | hay, 27k Ty B-(BEDT-TTF),SF;CH,CF,SO,
Slnh(2k7z2T/ha; ) . F. Zuo et al., PRB 60, 6296 (1999).

c

According to the 3D standard theory, in the minima of MQO the
magneotresistance decreases, while on experiment it increases.




Rzz

Observed angular dependence of MR

3000

2000

1000

24T

27T
20T
15T
10T

The positions of AMRO
maxima coincide with
Yamaji angle for given
Fermi surface and
triclinic symmetry.

The overlap with MQO
gives noise to AMRO.

One can compare R,,(B)
with theory in the AMRO
maxima. The old theory
predicts R,,(&,,, , B)~B?



Magnetic field dependence of MR In
the AMRO maxima (Yamaji angles)

Observed linear dependence

3800 R,.(8,,m, B)~B contrary to the
- - Ry(Bam » B)~B2 predicted by
2200 the old 3D-like theory

2800 7-(B) o0 Jz(/q:dtdn 0)

2600

2400 a-(0) 1+ (ot )
2200

2000 suggest that it does not work
ook |
1200 / For Lorentzian LL shape and

1|6 1|8 2

= J3(kpd tan ) + 2 Z

Rzz( eYam )

1388: [ neglecting the quantum term the
600 - new weakly coherent theory
- ./ n
388._ predicts R,,(&,.,, B)~B%?,
"% » a2 2 giving slightly better agreement,
B, (T) however other LL shapes may give
different result.

More accurate calculation based on newly proposed
weakly coherent model is planned for nearest future.




Motivation
Interlayer MR at very strong magnetic field

200 (a) nn'npla # I 'T='.r§r|-q {E:jl sample #1 T=75K
350 - 1180 g 4B 4 ]
e
250 - 160 47 mK ]
. Foaioy ™ | 140 80 mK ‘
g ts 10 “ R 218 mK .
o X : | (d) sample #2 T=T75K
190 N 455 mK
565 mK
100 660 mK
0 ? 4 B 8 10 12 14 18 18 20 -135 -80 -45 0 45 90 135 0 3 10
H (T) Field Angle 8 [degree] Magnetic Field [T]
F. Zuo et al., PRB 60, 6296 (1999). GaAs M. Kuraguchi et al.,
B-(BEDT-TTF),SF;CH,CF,SO, Synth. Met. 133-134, 113 (2003)

Sometimes, MR grows too strongly with increasing B, !



Summary

Applying the method of [L.S. Levitov, A.V. Shytov, JETP Lett. 66, 214 (1997)]
the Coulomb anomaly of interlayer electron transport in strong
magnetic field is analyzed and compared to the experimental data on
layered organic metals.

The Coulomb anomaly is given by
72z wer In (14 27e20d/2) f (kmax)
D(Bj W(??'@L+1)[IJ LEF~B);'I.’7]

where f Ulm’-r{} =2In2 + Y4+ U (3;;2 + ‘?“ma,:{,)

Q

Oz

]

This generalizes the result of [L.S. Levitov, A.V. Shytov, JETP Lett. 66, 214
(1997)] for finite temperature and finite upper cutoff

imax = Wkmax/AT€" ~ max {h/7, o} /ATe

Usually, the Coulomb anomaly gives a small correction to interlayer
conductivity of layered metals. But there are several compounds, as
B-(BEDT-TTF),SF.CH,CF,SO; where the Coulomb anomaly in strong
magnetic field considerably suppresses interlayer conductivity oy,



Similar behaviour: (TMTSF),PF, in the metallic state

Plan for future:

apply similar
arguments to
guasi-1D organic
metals, where
magnetic field
also localizes
conducting
electrons, and the
polarons may also
prevent interlayer

electron transport.

1.0

0.14

L 7
1 o021 01T ] conventional MR
— e 3

0.13

bl 1 L]
=100 =50 1] a0 100

2.0

1.54

Angle, deg

E. Chashechkina & P. Chaikin,

PRL 80, 2181 (1998)

anomalous MR
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Plan for

. . 35
e — Experimental observations of MQO enhancement -

8 7 6 S 4 v
16000 m T T ; . .

12000 : | | ; ; i

8000 : i

Magnetoresistance((2)

4000

In(c)

A Aﬁ

D 60
Magnehc F|eld (T)

20

FIG. 1. The temperature dependent magnetoresistance in
B"-(BEDT-TTF),SFsCH,CF,SO; (from the top, 0.59, 0.94, i o
.48, 1.58, 1.91, 2.18, 2.68, 3.03, 3.38, 3.80, and 4.00 K). The o
dotted lines and numbers indicate integer Landau-level filling 0.5 1.0 p 1.5
factors v = F/B. UT(K)

These magnetoresistance peaks were interpreted to be due to the gaps between LL in
electron spectrum [M.-S. Nam et al., PRL 87, 117001 (2001)], but there is another
explanation that the contribution to conductivity from the Coulomb blockade
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Electron localization length depends
on the Landau level filling factor v

If v~1, electron localization length & has oscillating dependence on
the LL filling factor v, which is extracted from in-plane conductivity:
I ' ' \ ' ' ‘ v v v v '

l I ?VT‘ 1.24% ] 1000
: A e
| LN 177 4
o M > <R
: HEWih
| & | A gA | &
| &3 92 ‘= 100
“E“ : ' g 10.05 £
S, 7 | ] @0 up
* : ‘b\6.28
' -
| 10
10" [ _®0c ]|
50 e0 70 filling factor v
R. M. Lewis and J. P. Carini, F. Hohls, U. Zeitler, and R.J. Haug,
PRB 64, 073310 (2001). Phys. Rev. Lett. 86, 5124 (2001).

This leads to the enhancement of MQO of interlayer conductivity,
when Coulomb energy from the formation of polaron is larger than t,.




Appendix 4. 29a

Differences of interlayer conductivity from
electron transport in dopped semiconductors

1. No variable range hopping (all lBZ X
electrons jump on interlayer 4 ‘"ﬁ" [
distance d ). 4 ”..
2. Electron localization length &
depends on time (due to charge
relaxation) and on magnetic field

3. £€>>d.
4. Exciton relaxation time is longer
than the electron hopping time.




The polaron and activation interlayer electron transport
also change the angular dependence of magnetoresistance

GaAs/AlGaAs superlattice

B”-(BEDT-TTF),SFsCH,CF,SO0,

" B(n) B-BEDT-TTF)SFCHCR,S0,
3
e 28
[ e 23
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Open guestion.
Transition (or crossover) from the coherent

to the weakly incoherent regime
We have considered two limit cases:

1. Weak magnetic field, when the electron level width does
not depend on magnetic field: Iy =I

2. Strong field, when the Landau level broadening increases
with field and becomes much larger than without field:

I, ~T, 4o,/zT, < B>>T.

What is the behavior in the transition region is not clear yet
(there is no quantitative theory).

In the calculations the LL width of the form I3 zl“o[(4coC /7:1“0)2 +1]1/4
has been used, which is valid only in limit cases.

Almost all layered materials with weak interlayer coupling
in strong magnetic field are in the weakly incoherent limit}




L Chemical potential oscillations

The origin of the o§C|I.Iat|ons - e i _ He
of chemical potential in 2D r
electron gas in magnetic field:
| | TN
the total electron density is a sum H—>—— ""‘;3—: s
over occupied Landau levels: @ s ‘-1\;1
7 H 3 r_l il "”.I_ ! N [Foe
| r R ol
o-“‘.-l
. | 7 71
IniTl) Focin+)—p{B] = r T >
1 + exp [ o — ) D24 D2g

If the Landau levels are sharp, the chemical potential periodically
jumps between adjacent Landau levels as magnetic field changes.



Appendix 2.

The chemical potential remains fixed
In many quasi-2D metals

PHYSICAL REVIEW B VOLUME 61, NUMBER 11 15 MARCH 2000-1

Two-dimensional Fermi liguid with fixed chemical potential

J. Wosmitza. S. Wanka, and J. Hagel,
Physikalisches Institut, Universitat Karlsruhe, 76128 Karisruhe, Germany

E. Balthes
Grenoble High Magnetic Field Laboratory, MPI and CN.R.5,, 38042 Grenoble, France

N. Harnison
National High Magnetic Field Laboratory, LANL Los Alamos, New Mexico 87545

J. A Schlueter, A M. Kmm, and U. Geiser
Chemistry and Materials Science Divisions, Argonne National Laboratory, Argonne, Iiinois 60439

J. Mohtasham, K. W. Winter, and G. L. Gard
Department of Chemisiry, Portland State University, Portland, Oregon 97207
(Received 28 October 1900)

de Haas-van Alphen measurements made on the organic metal 8"-({BEDT-TTT) ,5F;CH,CF,50; reveal the
existence of an ideal two-dimensional (2D) Fermu surface, but rather than having the conventional sawtooth
wave form that is normally observed in all other 2D electron gases, instead, an °‘inverse sawtooth™™ wave form
15 observed, which 1s to be expected when the chemical potential 15 pmned at a constant value. While this
proves the existence of the theorefically predicted quasi-one-dimensional band. it further implies that this band
has an exceptionally large density of states. 103



Shape of dHVA oscillations corresponds to

fixed chemical potential

Y | ' | |
B-(BEDT-TTF)S5FCH.OF,50,
0d L T=044 K
B =-07"
2
=
€0
@
=
|
'D-1 & dHulﬁ. ﬂ-ﬂlﬂ
— 2D formula (1)
I . | |
140 15 20 25

B{T)
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Appendix 2.

The chemical potential oscillations are absent because

of the magnetostriction, which leads to MQO of electron
density, leading to the grand canonical ensemble.

Oscillations of the chemical potential and the equation of state for beryllium
M. E. Alekseevskiland V. . Mizhankowskil

Tmstrtwre of Physical Probless, deademy of Scieaces af the USSR
(Submitted 18 October 1984
Zh. Eksp, Teor. Fiz. 88, 1771-1779 [May 1985

An attempt was made to detect oscillations of the chemical potential of beryllium associated with
variations in the density of states in a quantized magnetic field. No cscillations were detected from
voltage traces recorded across a measuring capacitor with a Be single crystal as one of its plates,
and it 15 deduced that their amplitude is at least an order of magnitude less than expected. The
result is attributed to cancellation of the changes in the chemical potential associated with oscilla-

tions in the density of states and with magnetestriction (volume changes). Such cancellation can
occur if the compressibility of beryllium is determined primarily by the conduction electrons.

105



Appendix 3.

For coherent limit these two approaches are
equivalent and give similar results

For example, without magnetic field one easily obtains from

e’t’d /¢ ,, ., .pde . N ,
o, = jd rd-r IEMmGR(r,r ,J,€) Im G(r ,I’,j+l,8)[—n,:(8)] :

L L

X =y
that conductivity is proportional to in-pane mean free time T .

This fact has direct physical meaning. If electron at t=0 is on the layer O,
its wave function amplitude on layer 1 is fat,t/h. After time t electron
scatters on impurity on layer 0, and since the impurity potential is
different on two layers, the coherence between two layers is lost. After
time t the probability that the electron tunnels to the next layer is (1) »
(t,x /h)? and the mean velocity is f?(z)d/z ~(t, /h)?zd.



Introduction

The standard model of interlayer electron transport

The Hamiltonian contains 3 terms:
H=Hy+ H:+ H;
1 1 2

The 2D free electron Hamiltonian in
magnetic field summed over all layers:

B B ) ~ i
H{] — E =2 {”?) {T'Tﬂ.,j{..ﬂl:j'

m,J]

the coherent electron tunneling between any two adjacent layers:

2D electron gas

2D electron gas

2D electron gas

NN

Hy=2t. ) /d.my[‘l’}(-r. )W 1 (e y) + Wl (o, y) W5, y))],
~.

and the point-like
impurity potential:

Hr =Y Vi(r) where V. (ry=U8 (r —r;)

The electron-electron and electron-phonon interactions are included
In the renormalization of electron effective mass (Fermi liquid theory).



Strongly incoherent interlayer magnetotransport
IS very model-dependent

Usually, the conductivity in this regime has non-metallic exponential
temperature dependence (thermal activation or Mott-type). It has very
weak or no angular dependence of background magnetoresistance
(contrary to the coherent case)

1. Interlayer hopping by resonant impurities [A. A. Abrikosov, Physica C
317-318, 154 (1999); D. B. Gutman and D. L. Maslov, PRL 99, 196602 (2007) ; PRB

77, 035115 (2008);]

2. Boson-assisted interlayer tunneling [U. Lundin and R. H. McKenzie, PRB 68,
081101(R) (2003); A. F. Ho and A. J. Schofield, PRB 71, 045101(2005);

3. Complete localization of electrons and variable-range hopping between localized
states [V. M. Gvozdikov, PRB 76, 235125 (2007); etc.]
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Hopping conductivity and metal-insulator phase transition

PHYSICAL REVIEW B 76, 235125 (2007)

Incoherence, metal-to-insulator transition, and magnetic quantum oscillations of interlayer
resistance in an organic conductor

V. M. Gvozdikov

Idea: all electronic states are localized as in QHE

V. VARIABLE RANGE HOPPING,
MAGNETORESISTANCE OSCILLATIONS,
AND METAL-TO-INSULATOR TRANSITION

A. Integer quantum Hall effect
regime and variable range hopping o Ty T) = o (0)exp(— Ty T}

C. Scaling and the metal-to-insulator transition V. M. Gvozdikov, PRB 76,
o (B.T) = o(0)exp[— A(|B = By|/T6%)°77] 235125 (2007)

| However, metallic in-plane conductivity and good angular
magnetoresistance oscillations do not support this scenario |




Incoherent conductivity channel [PRB 79, 165120 (2009)]

The resistance through each hopping
Eo center contains two in-series elements:

l
1j> zqi> é_//q/ RJ_:RhC+R||‘

The hopping-center resistance Rhc IS almost independent of magnetic
field and has nonmetallic temperature dependence.

The in-plane resistance R” depends on the magnetic field L to the

conducting layers, and has the metallic temperature dependence. It
can be calculated in the limit when the concentration of hopping

centers ni|:1/|i3 is much less than the concentration of normal

impurities N,=1/1,2 . Then the resistance R” is determined by the in-
lane conductivity:
P » R=EIn( ) o d.

The total incoherent part of conductivity: Toyn PE
l

U, = .
WdO-HRhC + ln(ll/lj)

of depends on magnetic field L layers
and has metallic T-dependence.



Motivation 120
Strongly incoherent models can explain
the monotonic growth of MR

when magnetic field is 1L layers (parallel to electric current)

200 Temperature (K)
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300 ] 120 8 ED'_E «(BEDT-TTF),Cu(NCS),
o © L P,,= T kbar I
- lo | o )l T=05K |
1 somk| = | e '
g 208 10 218 mK iadu_' H=0 l & 144
= x RRR =47 D
150 SD__ g }‘ 4 q ﬁ I | R
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= 1
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B-(BEDT-TTF),SF;CH,CF,SO; W. Kang et al., PRB 80, 155102 (2009)

F. Zuo et al., PRB 60, 6296 (1999).




