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Its comparison with the two-layer tunneling approach. 
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Layered quasi-2D metals 
Introduction 

Electron dispersion in the tight-binding 

approximation  is highly anisotropic: 

ε(p)=ε (p )+2tz cos(pzd/ℏ),  tz<<EF 

2D electron gas 

Magnetic 

field B 

2D electron gas 

2D electron gas 

Electron wave functions overlap leads to 

the finite interlayer transfer integral tz 

Fermi surface in layered Q2D 

metals is a warped cylinder.  

The size of warping W=4tz ~ ћωc 

Landau levels 
B 

Extremal 

cross 

sections 

(Examples: heterostructures, organic metals, all high-Tc superconductors) 

szz 

(coherent-tunneling, 

conserving p||) 
FS 

2 

ε(p )=p 
2/2m  

Two close frequencies => beats of MQO  



Motivation and urgency 

Layered compounds are very common: high-Tc cuprates, pnictides, 

organic metals, intercalated graphites, heterostructures, etc.  

 

Magnetoresistance (MQO and AMRO) is used to measure the quasi-

particle dispersion, Fermi surface, effective mass, mean scattering time.. 

It is an important complementary tool to ARPES. 

Motivation 

Experimentally observed dimensional 

crossover: 3D -> quasi-2D -> 2D shows 

many new qualitative features:  

(1) monotonic growth of Rzz(Bz),  

(2) different damping of MQO,  

(3) different angular dependence of MR 

Rzz 

Rzz(Bz) 
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ARPES (Angle resolved photoemission spectroscopy) 

Ek = kinetic energy of the 

outgoing electron — can 

be measured.  

               incoming photon 

energy - known from 

experiment, φ = known 

electron work function.  

Angle resolution of 

photoemitted electrons 

gives their momentum. 

Main idea: 

Therefore can find out 

information about E(k) 

The photocurrent intensity is proportional to a one-particle spectral function 

multiplied by the Fermi function: 

Rev.Mod.Phys. 75, 473 (2003) 

Motivation Drawback 1: Only surface electrons participate! 
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ARPES data and Fermi-surface shape 
The Fermi surface of near 

optimally doped  

(a) integrated intensity map 

(10-meV window centered at 

EF) for Bi2212 at 300 K 

obtained with 21.2-eV photons 

(HeI line); (b),(c) superposition 

of the main Fermi surface (thick 

lines) and of its (p,p) translation 

(thin dashed lines) due to 

backfolded shadow bands; (d) 

Fermi surface calculated by 

Massidda et al. (1988). 

Motivation 

Drawback 2: Ambiguous interpretation.  
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Phase diagram of high-Tc cuprate SC. 

High Tc and quantum phase transition  

Nd2-xCexCuO4 

   (NCCO) 

Motivation 

      n = 0.17 

Sh = 41.5% of SBZ 

Original FS: 

Theory predicts shift 

of the QPT point in 

SC phase? How 

strong is this shift? 

Reconstructed FS: 

n = 0.15 and 0.16 

Sh  1.1% of SBZ; 

D0.15  64 meV; 

D0.16  36 meV 

T. Helm et al., 

PRL 103, 157002 

(2009) 
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Angular dependence of background magnetoresistance 

Reconstruction 

of the FS in 

Tl2Ba2CuO6+d 

from polar 

AMRO data. 

N. E. Hussey et al., "A coherent 3D Fermi 

surface in a high-Tc superconductor", 

Nature 425, 814 (2003) 
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Magnetoresistance studies of organic metals 

Some books: 

1. J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals 

and Superconductors (Springer-Verlag, Berlin, 1996). 

2. T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 

2nd ed. (Springer-Verlag, Berlin, 1998). 

3. A.G. Lebed (ed.), The Physics of Organic Superconductors and 

Conductors, (Springer Series in Materials Science, 2009). 

 

Some review papers: 

1. D. Jérome and H.J. Schulz, Adv. Phys. 31, 299 (1982). 

2. J. Singleton, Rep. Prog. Phys. 63, 1111 (2000). 

3. M.V. Kartsovnik, High Magnetic Fields: A Tool for Studying Electronic 

Properties of Layered Organic Metals, Chem. Rev. 104, 5737 (2004). 

4. M.V. Kartsovnik , V.G. Peschansky, Galvanomagnetic Phenomena in 

Layered Organic Conductors, FNT 31, 249 (2005) [LTP 31, 185]. 

There are very many papers on the study of electronic properties of 

organic metals using magnetoresistance measurements. 

Motivation 8 



MQO of all thermodynamic quantities 

can be easily calculated from the DoS  

Introduction. 

The thermodynamic potential is given by the integral of DoS: 

Magnetization is given  

by the derivative 

But the transport quantities cannot be calculated so simply! 
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Theory of magnetoresistance is not as simple 

10 

Introduction 10 

Usually one separates monotonic (background) classical MR and MQO: 

     .~ BBB cl sss 

In quasi-2D metals the oscillations (MQO) are strong, 

and such separation in the theory is incorrect  
even if MQO are smeared by T or long-range disorder. 

While the thermodynamic potential is a linear functional of the DoS, 

conductivity has nonlinear dependence on DoS.  

Accurate calculation of longitudinal MR in the presence of MQO explains the 

monotonic growth of MR even in the one-particle approximation (electrons + B + 

disorder). 



Monotonic longitudinal MR remains unexplained 

11 Introduction 



Recent theoretical predictions for interlayer MR Rzz(B) 

1. Longitudinal interlayer 

magnetoresistance (MR) 

grows with Bz at c > 1: 

Rzz ~ Bz
1/2. It grows even if 

MQO are damped by T or 

by long-range disorder. 

 

2. Bz-dependence of MQO 

amplitude changes. The 

Dingle low RD=exp(-B0/Bz) 

is not valid (as in 2D case) 

 

3. Angular dependence of  

MR changes: both the 

monotonic part and the 

amplitude of AMRO.  
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B

1

2

3

4

5

6

Rzz

New 

Old 

Results 1 

Theory  

Rzz (Bz ) 

The coefficient 2 slightly depends on the LL shape 

12 

[1] P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).  

[2] P. D. Grigoriev, JETP Lett. 94, 48 (2011)  [arXiv:1104.5122]. 



The model of weakly coherent regime 

The Hamiltonian contains 3 terms: 

1. The 2D free electron Hamiltonian in 

magnetic field summed over all layers: 

3. The coherent electron tunneling between any two adjacent layers: 

2. The short-range  

impurity potential: 
where 

2D electron gas 

2D electron gas 

2D electron gas 

P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011); JETP Lett. 94, 48 (2011).  

1             3             2 

Model 13 

Magnetic 

field B 

szz 



Calculation of conductivity in q2D metals 

(standard theory, generalization to ћωc~ 4tz ) 

Conductivity (the linear response to external electric field) 

is calculated from the Kubo formula: 

Introduction 
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- derivative of the Fermi distribution function. 

I9 

is determined by the 3D electron dispersion, 

Irreducible self-energy in the 

non-crossing (self-consistent) 

approximation. The double 

line is exact Green's function.   

Electron dispersion in the tight-binding  

approximation is highly anisotropic: 
ε(p)=ε (p )+2tz cos(pzd/ℏ),  tz<<EF 



Previous theoretical results on Shubnikov - 

de Haas effect in quasi-2D metals 

Introduction 

Almost 2D case, ћωc>> tz   

[T. Champel and V.P. Mineev, PRB 66, 

195111 (2002)  (Submitted June 2002)] 

Quasi-2D case, ћωc<< 4tz   

[P.D. Grigoriev, cond-mat/0204270 (April 2002); 

PRB 67, 144401 (2003) (Submitted April 2002)] 

 where 

Equations for the Green’s function in self-consistent Born 

approximation in quasi-2D metals are complicated: 

Conductivity was calculated before only in the simple Born approximation 

Use expansion in the small parameter 
Introduce very large electron reservoir 

to damp MQO of the electron DoS. 

15 



Electron Green’s function in SCBA in q2D metals 

16 

we use 3D (or Q2D) electron dispersion in tight-binding approximation: 

Hamiltonian contains q2D free electrons + short-range impurity scattering: 

, , 

, 

This gives the system of equations: 

where 

and 

If 4tz< ћωc , one can consider each LL separately and 

equation on  simplifies to 4-order algebraic equation:  

Two limits depending on  0/ czt 



Electron self energy in SCBA in q2D metals 
17 

 D*Re  DIm

gives the following solution for 3 values of  

Equation on electron 

self-energy 

0.1,5.0,0/ 0 czt 

  00Re * D    0Im * D  only in finite interval 

around each Landau level 
  0Re * D 



Interlayer conductivity 
18 

Substituting 

and integrating over kz  we obtain: 

From Kubo formula for 3D metals with anisotropic dispersion 

where 

The electron self-energy 

is given equation in SCBA 

independence of background MR on T 



zzz BR 

Result 2.  Rzz(Bz) at finite interlayer transfer integral tz  

! Crossover from square-root to linear field dependence 

(observed in many high-Tc superconducting materials) 
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 tz=0

 tz=0

 tz=0

 tz=0

Calculation is 

valid at 
zc t4

Therefore linear MR 

is obtained only at  

0c

Square-root MR 

 

at higher field Bz 

or at smaller tz 



0~ czt 

R.B. Lyubovskii, S.I. Pesotskii et al., 

JETP 80, 946 (1995) 

Comparison with experiments on 

interlayer longitudinal MR at finite t
z 

20 

20 Result 2 

theoretical prediction: crossover from linear to 

square-root field dependence of MR at   

ET8[Hg4Cl12(C6H5Cl) 2] 
A.I. Coldea et al., PRB 69, 085112 (2004)  



Experiments on longitudinal interlayer MR Rzz(B) 
(magnetic field dependence: background resistance) 

YBa2Cu3Oy 

21 

linear MR transforms 

to B1/2 at lower T ? 

Result 1 

B. Vignolle et al.,  

PRB 85, 224524 (2012) 



Comparison with experiments on interlayer MR Rzz(B) 
(magnetic field dependence: background and MQO) 

Result 1  

P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012) 

Agreement is excellent, especially in clean sample! 

Theoretical 

prediction 

for the 

averaged MR 

Rzz(B)~B1/2 

at tz <<   

22 



Interlayer conductivity in the maxima 
23 

and the interlayer conductivity  

When chemical potential is in the center of LL,  

Then equation on SE simplifies 

at =0 in SCBA  

simplifies to 

  00Re 

for any  ! 0czt 

but 4tz< ћωc  



MR Rzz(B) in the minima of MQO 
(magnetic field dependence: background and MQO) 

Result  

Experimental data on 

Red line – background 

MR predicted by new 

theory 

[W. Kang, private communication] 

The temperature 

dependence of 

conductivity is 

metallic-type: 

[W. Kang et al., PRB 

80, 155102 (2009) ] 

24 

    !2/6.167.0/08.10minmin  BRBR

Again a very good agreement of theory with experiment! 



10,5,2,1.0/ 0 zt

2.  Rzz(Bz) at finite interlayer transfer integral tz  

! Crossover from 

square-root to linear        

field dependence  

at 2tz~B 

(qualitative arguments) 

25 

Contribution to szz from one LL at :  

4tz 

B 

00  cB 

2/c 2/c

even at tz=0 

the LL width 

140/ 0 c

4 values of tz: 



2

zzz ts

Conclusions (Part 1) 

The standard 3D theory of magnetoresistance (MR) (derived 

in the Born or even -appoximations) is not applicable to 

strongly anisotropic layered compounds.  

The reduction of dimensionality + magnetic field increase 

the effect of impurities, lead to strong longitudinal MR, 

change the Dingle plot and angular dependence of MR.  

26 

cczt   0 zzz BR 

czc t   40 zzz BR 

In the limit     longitudinal MR 

3

zzz ts
In the limit     longitudinal MR 

and       contrary to usual 

General conclusion: in quasi-2d to calculate MR one 
must consider MQO even if they are damped by T. 

This dependence is not damped by temperature (if impurity 

scattering is stronger than phonon scattering of conducting electrons) 



Technical conclusion on MR calculation Rzz(B) in 

strong magnetic field 

The Hamiltonian contains 3 terms: 

1. The 2D free electron Hamiltonian in 

magnetic field summed over all layers: 

3. The coherent electron tunneling between any two adjacent layers: 

2. The short-range  

impurity potential: where 

2D electron gas 

2D electron gas 

2D electron gas 
1             3             2 

27 

Magnetic 

field B 

szz 

1. The approach starting from the 3D strongly-anisotropic dispersion 

is valid even at tz < 0, but the Born approximation is not valid. In the 

second order in tz both approaches sum the same set of diagrams.   

2. The two-layer approach violates at tz > B = (C0 )
1/2 



Part 2: Angular dependence of MR in 
strongly anisotropic layered metals  

28 

Started in  P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011) 

 

Continued in P.D. Grigoriev, T.I. Mogilyuk, to be published 



Angle-dependent magnetoresistance 

oscillations (AMRO) in quasi-2D metals. 

For axially symmetric dispersion and in the first 

order in tz the Shockley tube integral gives: 
[R. Yagi et al., J. Phys. Soc. Jap. 59, 3069 (1990)] 

gives AMRO 

Yamaji angles 

Introduction 

First theory:  
K.J. Yamaji, 

Phys. Soc. 

Jpn.  58, 1520, 

(1989). 

AMRO 

Fermi surface 

LLs 

B 

First observation: 
M.V. Kartsovnik, P. A. 

Kononovich, V. N. 

Laukhin, I. F. Schegolev, 

JETP Lett. 48, 541 (1988). 

gives damping of 

AMRO by disorder 

29 

zz
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The two-layer tunneling model 

The Hamiltonian contains 3 terms: 

1. The 2D free electron Hamiltonian in 

magnetic field summed over all layers: 

3. The coherent electron tunneling between any two adjacent layers: 

2. The short-range  

impurity potential: 
where 

2D electron gas 

2D electron gas 

2D electron gas 
1             3             2 

Model 30 

Magnetic 

field B 

szz 



Calculation of the angular dependence of MR 
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the vector potential is             , the electron wave 

functions on adjacent layers acquire the coordinate-dependent phase 

difference       and the Green’s functions 

acquire the phase  
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The expression 

for conductivity 

has the form: 
GRGA 

New term! GRGR 

The impurity averaging on adjacent layers can be done independently: 

31 

31 

[started in P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011) ]. 
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Angular dependence of magnetoresistance  

in the weakly incoherent regime [ PRB 2011 ] 

Result 2011 
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   cos/1/00 BBB 

Result for Lorentzian LL 

shape is very approximate: 

It modifies for  > 1 . 
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B=5T B=10T 

New result 

Old result *1/2 

The difference comes from the high harmonic contributions and from the prefactor 

,tan dkFwhere but   depends on Bz: 

  .cos/1/10 s BBB ZZ and  the prefactor acquires  

the angular dependence: 

szz() 

32 



Angular dependence of harmonic amplitudes 

for arbitrary LL shapes 

33 Result  

2013a 

(P.D. Grigoriev, T.I. Mogilyuk) 

where       and the Laguerre polynomials 

The angular dependence of interlayer conductivity is given by 

a double sum over Landau levels: 



 

Angular dependence of MQO amplitudes  

is given not only by the spin-zero factor 
  

Angular dependence of harmonic amplitudes 

for Lorentzian and Gaussian LL shapes 

34 Result  

2013a 

For Gaussian LL shape the p0 terms are exponentially small at C >> 1,  

which leads to a strong enhancement of AMRO amplitudes. 

(P.D. Grigoriev, T.I. Mogilyuk) 

   cos/1/! 00 B

Spin current is considerable in strong field! 

For Lorentzian LL shape: 



2

zzz ts

Conclusions 

Part 1: The standard 3D theory of magnetoresistance (MR) 

(derived in the Born or even - appoximation) is not 

applicable to strongly anisotropic layered compounds.  

The reduction of dimensionality + magnetic field increase 

the effect of impurities, lead to strong longitudinal MR, 

change the Dingle plot and angular dependence of MR.  

35 

cczt   0 zzz BR 

czc t   40 zzz BR 

In the limit     longitudinal MR 

This dependence is not damped by temperature 

3

zzz ts
In the limit     longitudinal MR 

and       contrary to usual 

Thank you for your attention !. 

Part 2: Angular dependence of MR depends on LL shape. 

For Gaussian LL shape AMRO are much stronger. Angular 

dependence of MQO harmonics is calculated. Spin current 



[ PRB 79, 165120 (2009). ] 

But no AMRO is predicted in these models,  
which contradicts the experiments on Rzz() 

Motivation 36 

Rzz (Bz ) 

Rzz () 



Appendices 

37 



Background magnetoresistance in 3D metals (strong field) 

In strong magnetic field B (c>>1) magnetoresistance (MR) 

depends on the shape and topology of Fermi surface (FS), 

but B||J produces no MR. Only BJ gives MR. 

Introduction 

For closed trajectories  

the conductivity tensor 

For open trajectories  (open 

orbit along x-axis) 

the conductivity tensor is 

FS, containing 

open and closed 

trajectories 

38 

A.A. Abrikosov, Fundamentals of the 

theory of metals, North-Holland, 1988. 



Comparison with experiment on angular 

oscillations of magnetoresistance (AMRO) 

“Clean” sample 
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M. Kartsovnik et al., 

PRB 79, 165120 (2009) 

P. Moses and R.H. McKenzie, 

Phys. Rev. B 60, 7998 (1999). 

Result 3. 39 



.2 0 cczt  

Generalization of the theory of 

interlayer longitudinal MR for finite t
z 

40 

40 Result 2 

New result: crossover from linear to square-root 

field dependence of MR at  

ET8[Hg4Cl12(C6H5Cl) 2] 

Aim: extend applicability + explain experiments  

R.B. Lyubovskii, S.I. Pesotskii 

et al., JETP 80, 946 (1995) 
A.I. Coldea et al., PRB 69, 085112 (2004)  

Previous two-layer approach gives square-root Rzz(Bz) and 

is applicable at  tz << 0 << hC  

New approach is applicable at  0 ~tz < hC/4 

Longitudinal 

interlayer MR 

experiment Rzz(Bz) 



Impurity averaging 

The impurity distributions on two adjacent layers are uncorrelated, 

and the vertex corrections are small by the parameter tZ/EF, => 

  ,),1,,'(Im),,',(Im)(
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2D electron gas 

2D electron gas 

2D electron gas szz 

i 

tz 
tz 

i±1 

x 
x x 

Contain extra 

power of tZ/EF  

Vertex corrections can be ignored  

The calculation of interlayer conductivity 

reduces to 2D electron Green’s function 

41 



Shubnikov – de Haas oscillations in 3D metals  

Introduction 

MQO of conductivity in 3D metals mainly come from the oscillations of 

electron mean free time ~1/(EF). The DoS (EF) oscillates because of 

Landau level quantization.  
,

223


FS

z

D

zz ve s

So, in 3D conductivity is inversely proportional to the DoS, 

because oscillations of scattering rate 1/ dominate oscillations of 

mean square electron velocity averaged over FS. 

In 2D maxima of conductivity coincide with DoS maxima, 
because between the LLs there is no electron states to conduct =>  

the phase of Shubnikov-de Haas oscillations in 2D and 3D differs by  

=> 2D and 3D cases are not described by the same formula! 

/1

where in the Born approximation the scattering rate is given by golden Fermi rule:  

DoS 

42 



Comparison with experiments on interlayer MR Rzz(B) 
(magnetic field dependence: background and MQO) 

Result 1  

P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012);  

Agreement is excellent, especially in clean sample! 

Theoretical 

prediction for 

averaged MR: 

Rzz(B)~B1/2 

43 



The model of incoherent conductivity channel 

E0 

1 2 

The resistance through each hopping 

center  contains two in-series elements: 

The hopping-center resistance Rhc  is almost independent of magnetic 

field and has nonmetallic temperature dependence. 
 

The in-plane resistance R||  depends on the magnetic field  to the 

conducting layers, and has the metallic temperature dependence.  It 

can be calculated in the limit when the concentration of hopping 

centers ni =1/li
3 is much less than the concentration of normal 

impurities n =1/l
3 .  Then the resistance R|| is determined by the in-

plane conductivity:  
R||=ln(li /l )/s||d. 

The total incoherent part of conductivity: 

s|| depends on magnetic field  layers 

and has metallic T-dependence.  

44 

[ Phys. Rev. B 79, 165120 (2009) ] 



Landau level shape and harmonic damping 

of MQO can answer if electron dynamics is 
2D or 3D in particular compounds 

Another experimental indication  

of the 3D -> quasi-2D crossover when  

LL separation becomes greater than tz 
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P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher,  

Phys. Rev. B 86, 165125 (2012) 



Calculation of interlayer conductivity in the 

weakly incoherent regime [PRB 83, 245129 (2011)] 

2D electron gas 

2D electron gas 

2D electron gas szz 

The interlayer transfer integral tz<<0  is the 

smallest parameter. We take it into account in the 

lowest order (after the magnetic field and impurity 

potential are included as accurately as possible). 

Interlayer conductivity is calculated as the 

tunneling between two adjacent layers using 

the Kubo formula: 

  ,)(),1,,(Im),,',(Im4
2

'
22

22





s   FRR

yx

z

zz njrr'GjrrG
d

rdrd
LL

dte

),,',( jrrGRwhere the Green’s function  

Approach 1 to solve of the problem 

includes magnetic field and impurity scattering. 

Conductivity (the linear response to 

external electric field) is again 

calculated from the Kubo formula: 
i 

tz tz i±1 
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New features of MQO of conductivity in Q2D 

appear already in the first order in  ћωc/ 4tz <<1 

Phase shift of beats Slow oscillations of MR 

P.D. Grigoriev et al., Phys. Rev. B 65, 60403(R) (2002). 

Introduction 

Phys. Rev. Lett. 89, 126802 (2002);  

Rigorous calculation is performed in P.D. Grigoriev, PRB 67, 144401 (2003). 

-(BEDT-TTF)IBr2  
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When B J , strong MR Rzz(Bx) is not surprising 
48 Introduction 

The transverse magnetoresistance 

Rzz(Bx) can be quadratic, linear, 

or even  Rxx(Bz)~Bz
1/2  

as in graphen  

 

[L.A. Falkovsky, Phys. 

Rev. B 75, 033409 (2007)] 

[A.F. Ho, A.J. Schofield, 

arXiv:cond-mat/0211675; 

A.J. Schofield and J.R. 

Cooper, Phys. Rev. B 62, 

10779 (2000); .. ]  

Only longitudinal magnetoresistance is strange 



Previous theoretical results on Shubnikov - 

de Haas effect in quasi-2D metals (3) 

Introduction 49 

Variable-range hopping model 

for interlayer electron transport 

2D electron gas 

2D electron gas 

V. M. Gvozdikov, PRB 76, 235125 (2007) 

Title: Incoherence, metal-to-insulator transition, 

and magnetic quantum oscillations of interlayer 

resistance in an organic conductor 

To explain the particular 

experiment he also assumed 

But in fact no 

VRH in Q2D 

componds 



Do any new features in the theory of 
angular and field dependence of MR appear  

as we go from 3D to quasi-2D limit?  

This conclusion is incorrect.  
It is based on oversimplified model for the interaction with impurities:  

Born approximation + neglect of MQO => constant electron self energy)  

  ,
,

1
),(

02 


ikn
nG

yD

R


They have used the following  

2D electron Green’s function  
disorder 

wrong 

Introduction 

Generally accepted opinion [P. Moses and R. H. McKenzie, PRB 60, 7998 (1999)] 

that during coherent-weakly incoherent crossover ( tz< 0 ) no changes.  

In strong magnetic field, when 0 < ћωc~ tz , MQO produce monotonic 

(background) MR, leading to strong longitudinal MR for Blayers. This 

changes the angular dependence of MR and reduces AMRO amplitude. 

In PRB 83, 245129 (2011) I have shown, that 
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The 2D electron Green’s function with disorder in Bz 
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The point-like impurities are included in the 

“non-crossing” approximation, which gives:   

where 
Tsunea Ando,  J. Phys. 

Soc. Jpn. 36, 1521 (1974) 
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The density of states on each Landau level has the dome-like shape: 
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





cBIn strong magnetic field the effective electron 

level width is much larger than without field: 
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Four-site approximation 

Tsunea Ando,  J. Phys. Soc. Japan 37, 622 (1974)]. 
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Diagrams with intersections of impurity lines: 



The shape of LLs is not as important as their width! 

The inclusion of diagrams with intersection of impurity lines in 2D 

electron layer with disorder only gives the tails of the DoS dome. 

The width of this dome remains unchanged and ~Bz
1/2:  

DoS 

E 

D(E) 

bare LL broadened LL 

1ic

DoS 

E 

D(E) 

bare LL broadened LL 

1ic

Therefore, we can take the DoS:    .
/

22

B

B

E
ED








The corresponding Green’s function is   ,
,

1
),(

2 ByD

R
ikn
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






   4/12

00 1/4  cB

The conductivity is not sensitive to the shape of LLs, 

but strongly depends on their width. 

where  and 0 is the electron level width  

without magnetic field 

which gives ./1/63.0/89.04/ 000000 Zccczz B ssss
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Monotonic part of conductivity for B || z 

The averaging over impurities on two adjacent layers is not correlated. 

For B = BZ we get 

LLiiHzi NNNlc /2
2   ./

2

0 cgi Ec where and 

In weak magnetic field this gives 

In the SC Born approximation  .
06.1

5.1
3

8

0

00
0

0
0



s


s


ss

ccc

zz 







Zc B

1
13.10

0 





s

Result 1a  54 

Substituting Green’s functions in the various approximations gives the 

monotonic part of interlayer conductivity [P.D.Grigoriev, JETP Lett. 94, 47 (2011)]  



Comparison with experiments on interlayer MR Rzz(B) 
(magnetic field dependence: background and MQO) 

Result 1  

Experimental data on 

Red line – background 

MR predicted by new 

theory 

[W. Kang, private communication] 

The temperature 

dependence of 

conductivity is 

metallic-type: 

[W. Kang et al., PRB 80, 

155102 (2009)] 
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Comparison with experiments on interlayer MR Rzz(B) 
(magnetic field dependence: background and MQO) 

Result 1  

MR growth appears also at large tz ~ , as in 

B 
PRL 89, 126802 (2002);  

Plans for future:  

study MR at tz ~  

! Beautiful effect: Both slow oscillations and background 

MR originate from MQO but survive at much higher T 
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Comparison with experiments on interlayer MR Rzz(B) 
(magnetic field dependence: background and MQO) 

Result 1  

predicted field dependence 

of non-oscillating part of 

magnetoresistance 

measured field dependence of 

magnetoresistance in  

 
A.I. Coldea et al., PRB 69, 085112 (2004)  
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Larger tz => longer range of linear MR  



Comparison with experiments on interlayer MR Rzz(B) 
(magnetic field dependence: background and MQO) 

Result 1  

Longitudinal MR crossover from linear to square-root at  tz ~c 

ET8[Hg4Cl12(C6H5Cl) 2] 

R.B. Lyubovskii, S.I. Pesotskii et 

al., JETP 80 (5), 946 (1995) 
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long range 

of linear MR  



Comparison with experiments on interlayer MR Rzz(B) 
(magnetic field dependence: background resistance) 

MR growth crossover from linear to square-root at  tz ~c 

La1.97Sr0.03CuO4 

I.Raičević, D.Popović et al.,  

PRB 81, 235104 (2010) 
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linear MR transforms 

to B1/2 at higher field 

Result 1 



Interlayer 
magnetoresistance 
in Fe-based high-Tc 

superconductors 

Usually attributed to the field-induced 

spin-density wave (FISDW ) state with 

partially gapped FS, but it is not 

correct because FISDW with Tc >100K 

require much stronger magnetic field     

Chin. Phys. Lett. 26(10) 107401 (2009); 
Chen G F, Li Z et al 2008 Phys. Rev. B 78 224512 

But it agrees with the proposed  theory 

of longitudinal MR in quasi-2D metals 

SrFe2As2 BaFe2As2 
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Two-layer theory, predicting 

the square-root MR Rzz(Bz),  

is applicable at  tz << 0 << hC  

61 

What happens at larger tz , or at smaller Bz? 



Damping of MQO for various LL shapes in 2D 

The Dingle factor depends 

on the LL DoS D(E) as 

For Lorentzian LL shape and   independent of B one obtains 

standard Dingle factor:  

For Lorentzian LL shape and   ~ B1/2 
(as for short-range disorder in 2D):  

For Gaussian LL shape and   independent of B (long-range 

disorder in 2D):  

For Gaussian LL shape and   ~ B1/2 (short-range disorder in 2D):  

Possible damping laws for MQO harmonics: 

62 



We take the same compound where there was excellent 
agreement on field-dependence of interlayer MR Rzz(B) 

P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012) 

63 

Theoretical 

prediction for 

averaged MR: 

Rzz(B)~B1/2 



Field-dependence of MQO amplitude in  

layered organic metal -(BEDT-TTF)2KHg(SCN)4  

The Dingle plot, i.e. the logarithm of 

the amplitude of the first harmonic of 

MQO divided by the temperature 

damping factor RT , plotted as function 

of the inverse magnetic field 1/B. 

The modified Dingle plot: the logarithmic 

plot of the amplitude of the first harmonic 

of MQO divided by the temperature 

damping factor RT as function of the 

inverse magnetic field squared 1/B2. 

This corresponds to 

Gaussian LL shape => 

Small MQO 

amplitude => 

large error 

64 Result 2  



Damping of higher harmonics of MQO 

in -(BEDT-TTF)2KHg(SCN)4  

FFT at 24T<B<28T 

1st 

harmonic 
2nd  

Calculation shows, 

that observed 

harmonic damping 

obeys that for 

Gaussian LL shape 

and   independent  

of B (long-range 

disorder in 2D)  
[P.D. Grigoriev, M.V. Kartsovnik, 

W. Biberacher, arXiv:1205.0041]:  

This is in strong contrast to 3D Dingle law but agrees with 2D DoS ! 
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P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012) 



Conclusions from comparison with experiment 

1. In strongly anisotropic layered metals the standard 3D theory of 
MR is not valid. The new quasi-2D weakly coherent regime 

show up by appearance of strong longitudinal interlayer MR, 

originating from MQO but surviving at much higher temperature. 

 

2. The electron dynamics in this regime is indeed closer to 2D than 

to 3D, as derived also from analysis of MQO, Dingle plot, 

harmonic damping and LL shape.   

 

3. The main qualitative features of the proposed theory of MR in 

new weakly coherent regime (growth of MR, damping of MQO) 

agree with experiment. 

The field-induced dimensional crossover of MR is proposed 
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P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012) 



Further work 

1. New accurate calculation of the angular dependence of MR 

2. Change of angular dependence of harmonic amplitudes of MQO 
3. The crossover 2D --> quasi-2D --> 3D  (tz ~ 0) 

4. Very high field, when the growth of Rzz(B) is faster than ~B1/2 .  
5. The crossover weak --> strong magnetic field (C ~ 0).  

6. Influence of chemical potential oscillations and electron reservoir. 

7. Quasi-1D anisotropic metals. 

Above analysis is only the first step in the theory of MR in layered metals 

There is still much work to do: 

Probably, due to Coulomb anomaly in 

compounds with low electron density 

67 

second 

part of 

the talk 

- currently studied by P.G. and (hopefully) solved in the simplest model 



Conclusions 

The standard 3D theory of magnetoresistance (MR) is not 

applicable to strongly anisotropic layered compounds.  

 

In one-electron approach the reduction of dimensionality 

+ magnetic field increase the effect of impurities, leading 

to strong longitudinal MR and changes in the Dingle plot 

and angular dependence of MR.  

 

The e-e interaction may additionally suppress interlayer 

conductivity, leading to the magnetic-field dependent 

Coulomb blockade => strong magnetoresistance.   

Thank you for attention! 
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Recent theoretical predictions for interlayer MR Rzz(B) 

1. Longitudinal interlayer 

magnetoresistance (MR) 

grows with Bz at c > 1: 

Rzz ~ Bz
1/2. It grows even if 

MQO are damped by T or 

by long-range disorder. 

 

2. Bz-dependence of MQO 

amplitude changes. The 

Dingle low RD=exp(-B0/Bz) 

is not valid (as in 2D case) 

 

3. Angular dependence of  

MR changes: both the 

monotonic part and the 

amplitude of AMRO.  

5 10 15 20
B

1

2

3

4

5

6

Rzz

New 

Old 

Results 1 

Theory  

Rzz (Bz ) 

The coefficient 2 slightly depends on the LL shape 
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  2
12exp~ LLc NR

Applicability of Kubo formula 

If electronic states in the layers are localized, the discrete 

electron energy spectrum with level separation ~h2/m2 
may violate the Kubo formula when  >~ T, h/ , tz .  

Localization length of 2D electrons in magnetic field [Bodo Huckestein, 

RMP 67, 357 (1995)] 

where the  

Larmor radius  

and dimensionless 

conductivity 

Hence the localization length  

where NLL is the number of filled Landau levels; usually NLL >> 1.  

No electron localization at NLL >> 1 and Kubo formula works! 

Because T, h/, tz >> [c /(2NLL+1)] exp[- (2NLL+1)2 ]! 

In organic metals for highest available fields NLL >10 (usually NLL ~100)  
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Physical reason for the increase of interlayer 

resistivity in high magnetic field 

BZ 1 

2 

The impurity distributions on adjacent 

layers are different. When an electron 

tunnels between two layers, its in-plane 

wave function does not change, but the 

energy shift due to impurities differs by 

the LL width W  (0 C)1/2 ~ BZ
1/2 

Why W  ~ BZ
1/2 ? Because the area where e0, approximately, S ~1/BZ, 

and the number of effectively interacting with the electron impurities 

ci SNi ~1/BZ fluctuates as ci
1/2 ~ BZ

-1/2, => the average shift of electron 

energy due to impurities W=SNiV0 fluctuates as W/ci
1/2 ~(SNi)

1/2V0~ BZ
1/2 . 

Rough explanation: low dimensionality + strong magnetic field enhance 

the effective interaction with impurities and the mean scattering rate 1/ 

=> increase of resistivity according to    
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Another explanation:  



Why the non-crossing approximation is applicable? 

Why only the short-range impurities are included? 

In 2D in magnetic field the center of electron Larmor orbit drifts along 

the equipotential lines of long-range disorder (hills and valleys). This 

gives QHE, mobility edges, etc.   

In quasi-2D metals the long-time 2D electron dynamics is 

cut-off by the new time scale of interlayer electron hopping 

h/tz , therefore the QHE has not been observed in layered 

quasi-2D compounds 

To calculate the in-plane Green’s function  

one can use the non-crossing approximation 

with short-range impurity scattering. 

Just Born approximation gives qualitatively wrong result (no Bz dependence of Rzz).  

Self-consistent Born approximation is much better and only gives a wrong factor  ~1. 
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Is inelastic scattering time necessary for this calculation? 

73 

The Hamiltonian of the model contains 3 terms: 

1. The 2D free electron Hamiltonian in 

magnetic field summed over all layers: 

3. The coherent electron tunneling between any two adjacent layers: 

2. The short-range  

impurity potential: 
where 

2D electron gas 

2D electron gas 

1             3             2 

Magnetic 

field B 

szz 

As we restrict to only two layers, without coherent tunneling to next 

layer, do we need the condition <h ? 

Motivation 



AMRO do not require 3D Fermi surface , but only  

a coherent (momentum conserving) interlayer tunneling 

with 2D free electrons in magnetic field 

summed over all layers: 

and the coherent electron tunneling between any two adjacent layers: 

2D electron gas 

2D electron gas 

2D electron gas 

Introduction 

gives AMRO due to the overlap of electron wave functions, because they 

shift in tilted magnetic field for different layers j:  

 

Hamiltonian 

[ Y. Kurihara,  

J. Phys. Soc. Jpn. 

61, 975 (1992)] where magnetic length 
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B

Landau level broadening in 2D case 
depends on the range of impurities 

For a white-noise or Gaussian correlator of the impurity potential U (r): 

one obtains dome-like (“non-crossing” approx.) 

and Gaussian LL shape (in better approx.): 

For a long-range impurity potential, when d<<lH, the LL width  is 

independent of B (but may depend on LL number N),   

while for short-range disorder in strong field 

the LL width                  as in the “non-crossing” approximation.  
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LL width: 
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[ I.V. Kukushkin, S.V. Meshkov and V.B. Timifeev, Sov.Phys. Usp. 31, 511 (1988) ] 75 



Landau level shape in 2D  

For a white-noise or Gaussian correlator of the impurity potential U (r): 

one obtains Gaussian shape of the Landau levels [see review in 

I.V. Kukushkin, S.V. Meshkov and V.B. Timifeev, Sov.Phys. Usp. 31, 511 (1988).] 

The LL shape in 2D depends on theoretical model 

For point-like impurities in the “non-crossing” 

approximation gives dome-like LL shape  

[Tsunea  Ando, J. Phys. Soc. Jpn. 36, 1521 (1974)]:   
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Any case, in 2D the LL shape is not Lorentzian ! 

E3 
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Why result of [E. Brezin, D.I. Gross, C. Itzykson. Nucl. 

Phys. B 235, 24 (1984)] is applicable only for lowest LL 
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Summary (part I) 

A dimensional crossover and the new regime of electron transport in 

layered metals is proposed, when the interlayer tunneling time is longer 

than the cyclotron period. In this regime the effect of impurities is much 

stronger than in standard 3D theory. This qualitatively changes the 

angular and field dependence of magnetoresistance:    

1. The background interlayer MR grows ~B1/2 with increasing field B||s. 

2. The Dingle temperature grows ~B1/2 + contains the terms from long-

range disorder. This leads to the stronger damping of MQO. 

3. The angular dependence of MR changes: additional (cos)-1/2 factor 

appears and the AMRO are weaker. 

Publications: 

[1] P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).  

[2] P. D. Grigoriev, JETP Lett. 94, 48 (2011) [arXiv:1104.5122]. 

[3] P.D. Grigoriev, Low Temp. Phys./Fiz. Nizk. Temp. 37, 738 (2011). 

[4] P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, PRB 86, 165125 (2012) 

The predictions of new theory nicely agree with experiment 
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Details of the analysis of harmonic damping 
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Green’s function (coherent limit) 

 

   
,

,)cos(2,

),(),(
),,,(

2

11

0

,,22

0

,,

,,

21

0

21

Bidktkn

eyxyx
jrrG

zzyD

zzik

jknjkn

kkn

R

z

yy

zy












Green’s function in quasi-2D metals (coherent limit) 

where 0 – are the wave functions of 2D electrons in magnetic 

field, and the level broadening  oscillates as function of energy 
 and magnetic field around the field-independent value 0/2 , 

being proportional to the density of states. 

impurity 

effect 
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If the energy levels m and wave functions m 

of quantum states m are known , the Green’s 

function writes down as 

One cannot find exactly the electron energy levels and Green’s 

functions of macroscopic system with impurity scattering.  

Therefore, one applies the perturbation theory, with averaging over 

disorder. Then, in the Born approximation, impurity scattering leads to 

the energy-dependent imaginary part of electron self energy.  

Incorrect in the weakly  

incoherent limit 
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  2
12exp~ LLc NR

Applicability of Kubo formula 
8a 

If electronic states in the layers are localized, the discrete 

electron energy spectrum with level separation ~h2/m2 
may violate the Kubo formula when  >~ T, h/ , tz .  

Localization length of 2D electrons in magnetic field [Bodo Huckestein, 

RMP 67, 357 (1995)] 

where the  

Larmor radius  

and dimensionless 

conductivity 

Hence the localization length  

where NLL is the number of filled Landau levels; usually NLL >> 1.  

No electron localization at NLL >> 1 and Kubo formula works! 

Because T, h/, tz >> [c /(2NLL+1)] exp[- (2NLL+1)2 ]! 

In organic metals for highest available fields NLL >10 (usually NLL ~100)  
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B

Landau level broadening in 2D case 
depends on the range of impurities 

For a white-noise or Gaussian correlator of the impurity potential U (r): 

one obtains dome-like (“non-crossing” approx.) 

and Gaussian LL shape (in better approx.): 

For a long-range impurity potential, when d<<lH, the LL width  is 

independent of B (but may depend on LL number N),   

while for short-range disorder in strong field 

the LL width                  as in the “non-crossing” approximation.  
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The exactly solvable models, applicable to 

the lowest LL, prove Gaussian LL shape 

where 

[ E. Brezin, D.I. Gross, C. Itzykson. Nucl. Phys. B 235, 24 (1984) ] 

where 

I.S. Burmistrov, M.A. Skvortsov, 

JETP Lett. 78, 156 (2003)  
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New result 

Old result 

Comparison of the results on Rzz of standard theory (coherent regime) 

and new theory (weakly incoherent) : 

Result 2. 

MQO of interlayer conductivity: 

Dingle factor background MR 

background MR 

grows with Bz 

(Result 1) 

and the Dingle factor depends on LL shape: 
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Landau level shape and harmonic damping in 3D 

In 3D the electron Green’s function has the form  
 
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Calculation of conductivity in metals 

(standard theory, coherent 3D case) 

Conductivity (the linear response to external electric field) 

is calculated from the Kubo formula: 

Introduction 
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where m=(n, ky ,kz ), the electron velocity ,/),( zz knv  

- retarded electron Green’s function, where scattering by 

impurities is taken in the lowest order (Born approx.), 
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- derivative of the Fermi distribution function. 

is determined by the 3D electron dispersion, 
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Applying Poisson summation formula after integrations we get 

Change integration variable (kz  ’): 
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Evaluation of the Kubo formula 

where   22
)2/1(4/),(  ntdknv czz 

   22
)(Im)(Re)(

)(Im
),(Im






RR

R
R

m
mG




We now substitute 

Introduction 87 



Evaluation of the Kubo formula (2) 

We assume the harmonic  

damping is strong and  

keep only first harmonics  

in the expression for  

conductivity: 

Scattering on point-like impurities in  

self-consistent Born approximation:  = + 

x x 
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This term cannot  

be obtained from  

the Boltzmann  

transport equation 
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Observable consequences 

For                         the expression for conductivity simplifies: 
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Coherent and incoherent interlayer electron transport

2D electron gas 

2D electron gas 

2D electron gas 

The coherent regime gives the well-defined 3D 

electron dispersion ε(p)=ε (p) +2tz cos(kzd) and 

Fermi surface as a warped cylinder.  It assumes 

tz>>h, where  is the in-plane mean free time.   

Theory of magnetoresistance in coherent 

regime is developed and works well. 

“Weakly incoherent” interlayer magnetotransport:

p is conserved in interlayer tunneling, but the tunneling time is longer than 

the cyclotron and/or mean free times. The 3D FS and electron dispersion are 

smeared. Examples - all layered metals with small tz in strong magnetic field: 

organic metals, heterostructures, high-Tc cuprates, pnictides, intercalated graphite.     
Are the standard formulas for magnetoresistance applicable 

in this case? Does this regime contains new physics? 
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MQO in the weakly incoherent regime (Bz||szz) 
Experiment  

-(BEDT-TTF)2SF5CH2CF2SO3 

F. Zuo et al., PRB 60, 6296 (1999). 
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Theory [T. Champel and V. P. 

Mineev, PRB 66, 195111 (2002)] 
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According to the 3D standard theory, in the minima of MQO the 

magneotresistance decreases, while on experiment it increases. 

Formulation of the problem I16 
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Observed angular dependence of MR 

0
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R
zz

The positions of AMRO 

maxima coincide with 

Yamaji angle for given 

Fermi surface and 

triclinic symmetry.  

 

The overlap with MQO 

gives noise to AMRO. 

 

One can compare Rzz(B) 

with theory in the AMRO 

maxima. The old theory 

predicts Rzz(Yam , B)~B2 
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Magnetic field dependence of MR in 

the AMRO maxima (Yamaji angles) 

Observed linear dependence  

Rzz(Yam , B)~B contrary to the 

Rzz(Yam , B)~B2 predicted by  

the old 3D-like theory  

 

 

suggest that it does not work 

 

For Lorentzian LL shape and 

neglecting the quantum term the 

new weakly coherent theory 

predicts Rzz(Yam , B)~B3/2 , 

giving slightly better agreement,  

however other LL shapes may give 

different result. 

More accurate calculation based on newly proposed 

weakly coherent model is planned for nearest future. 93 



Interlayer MR at very strong magnetic field 
27 

Sometimes, MR grows too strongly with increasing Bz ! 

F. Zuo et al., PRB 60, 6296 (1999). 

-(BEDT-TTF)2SF5CH2CF2SO3 
GaAs       M. Kuraguchi et al.,  

   Synth. Met. 133-134, 113 (2003) 

Motivation 
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Summary 

• Applying the method of [L.S. Levitov, A.V. Shytov, JETP Lett. 66, 214 (1997)] 

the Coulomb anomaly of interlayer electron transport in strong 

magnetic field is analyzed and compared to the experimental data on 

layered organic metals.  

 

• The Coulomb anomaly is given by  

 

 

 

 

 

• This generalizes the result of [L.S. Levitov, A.V. Shytov, JETP Lett. 66, 214 

(1997)]  for finite temperature and finite upper cutoff 

 

 

• Usually, the Coulomb anomaly gives a small correction to interlayer 

conductivity of layered metals. But there are several compounds, as 

-(BEDT-TTF)2SF5CH2CF2SO3  where the Coulomb anomaly in strong 

magnetic field considerably suppresses interlayer conductivity  szz 

where 
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Similar behaviour: (TMTSF)2PF6 in the metallic state 

E. Chashechkina & P. Chaikin,  
    PRL 80, 2181 (1998) 

anomalous MR 

conventional MR 

Plan for future: 

 

apply similar 

arguments to 

quasi-1D organic 

metals, where  

magnetic field 

also localizes 

conducting 

electrons, and the 

polarons may also 

prevent interlayer 

electron transport. 

33 
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Experimental observations of MQO enhancement 

These magnetoresistance peaks were interpreted to be due to the gaps between LL in 

electron spectrum   [M.-S. Nam et al., PRL 87, 117001 (2001)], but there is another 

explanation that the contribution to conductivity from the Coulomb blockade  

0 

35 Plan for 

future: 
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Electron localization length depends 

on the Landau level filling factor  

R. M. Lewis and J. P. Carini, 

PRB 64, 073310 (2001). 

F. Hohls, U. Zeitler, and R.J. Haug, 

Phys. Rev. Lett. 86, 5124 (2001). 

If ~1, electron localization length  has oscillating dependence on 

the LL filling factor , which is extracted from in-plane conductivity:  

This leads to the enhancement of MQO of interlayer conductivity, 
when Coulomb energy from the formation of polaron is larger than tz. 

34 
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Differences of interlayer conductivity from 

electron transport in dopped semiconductors 

29a 

1. No variable range hopping (all 

electrons jump on interlayer 

distance d ).  

2. Electron localization length  

depends on time (due to charge 

relaxation) and on magnetic field 

3.   >> d . 
4. Exciton relaxation time is longer 

than the electron hopping time. 

BZ 

1 

d 

+ 

- 
2 

Appendix 4. 
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’’-(BEDT-TTF)2SF5CH2CF2SO3 

J. Wosnitza et al., 65, 180506(R) (2002) 

GaAs/AlGaAs superlattice 

M. Kuraguchi et al.,  
Synth. Met. 133-134, 113 (2003) 

incoherent 

coherent 

The polaron and activation interlayer electron transport  

also change the angular dependence of magnetoresistance 

32 
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Transition (or crossover) from the coherent 

to the weakly incoherent regime 

We have considered two limit cases: 
 

1. Weak magnetic field, when the electron level width does 

not depend on magnetic field: 
 

2. Strong field, when the Landau level broadening increases 

with field and becomes much larger than without field: 

0B

./4 000  BcB 

What is the behavior in the transition region is not clear yet 

(there is no quantitative theory). 

In the calculations the LL width of the form 

has been used, which is valid only in limit cases. 

   .1/4
4/12

00  cB

Open question. 25 

Almost all layered materials with weak interlayer coupling 

in strong magnetic field are in the weakly incoherent limit! 
101 



Chemical potential oscillations 
Appendix 2. 

The origin of the oscillations 

of chemical potential in 2D 

electron gas in magnetic field: 

If the Landau levels are sharp, the chemical potential periodically 

jumps between adjacent Landau levels as magnetic field changes.  

the total electron density is a sum 

over occupied Landau levels: 
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The chemical potential remains fixed 

in many quasi-2D metals 

Appendix 2. 
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Shape of dHvA oscillations corresponds to 

fixed chemical potential 

104 



The chemical potential oscillations are absent because 

of the magnetostriction, which leads to MQO of electron 

density, leading to the grand canonical ensemble.  

Appendix 2. 
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For coherent limit these two approaches are 

equivalent and give similar results 

For example, without magnetic field one easily obtains from 

  ,)(),1,,(Im),,',(Im4
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that conductivity is proportional to in-pane mean free time  . 

This fact has direct physical meaning. If electron at t=0 is on the layer 0, 

its wave function amplitude on layer 1 is ftzt/h. After time  electron 

scatters on impurity on layer 0, and since the impurity potential is 

different on two layers, the coherence between two layers is lost. After 

time  the probability that the electron tunnels to the next layer is f2()  

(tz /h)2 and the mean velocity is f2()d/  (tz /h)2d. 

Appendix 3. 
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The standard model of interlayer electron transport 

The Hamiltonian contains 3 terms: 

The 2D free electron Hamiltonian in 

magnetic field summed over all layers: 

the coherent electron tunneling between any two adjacent layers: 

and the point-like  

impurity potential: 
where 

2D electron gas 

2D electron gas 

2D electron gas 

The electron-electron and electron-phonon interactions are included 

in the renormalization of electron effective mass (Fermi liquid theory). 

1    1             2 

Introduction I2 
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Strongly incoherent interlayer magnetotransport 

is very model-dependent 

Usually, the conductivity in this regime has non-metallic exponential 

temperature dependence (thermal activation or Mott-type). It has very 

weak or no angular dependence of background magnetoresistance 

(contrary to the coherent case)   
 

1. Interlayer hopping by resonant impurities [A. A. Abrikosov, Physica C 

317-318, 154 (1999); D. B. Gutman and D. L. Maslov, PRL 99, 196602 (2007) ; PRB 

77, 035115 (2008);] 

 

2. Boson-assisted interlayer tunneling [U. Lundin and R. H. McKenzie, PRB 68, 

081101(R) (2003); A. F. Ho and A. J. Schofield, PRB 71, 045101(2005);  

 

3. Complete localization of electrons and variable-range hopping between localized 

states [V. M. Gvozdikov, PRB 76, 235125 (2007); etc.] 

I19 
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Hopping conductivity and metal-insulator phase transition 

V. M. Gvozdikov, PRB 76, 

235125 (2007) 

C. Scaling and the metal-to-insulator transition 

IV. VARIABLE RANGE HOPPING, 

MAGNETORESISTANCE OSCILLATIONS, 

AND METAL-TO-INSULATOR TRANSITION 

A. Integer quantum Hall effect 

regime and variable range hopping 

I16a 

Idea: all electronic states are localized as in QHE 

! However, metallic in-plane conductivity and good angular 

magnetoresistance oscillations do not support this scenario 109 



Incoherent conductivity channel  [PRB 79, 165120 (2009)] 

E0 

1 2 

The resistance through each hopping 

center  contains two in-series elements: 

The hopping-center resistance Rhc  is almost independent of magnetic 

field and has nonmetallic temperature dependence. 
 

The in-plane resistance R||  depends on the magnetic field  to the 

conducting layers, and has the metallic temperature dependence.  It 

can be calculated in the limit when the concentration of hopping 

centers ni|=1/li
3 is much less than the concentration of normal 

impurities n|=1/l
3 .  Then the resistance R|| is determined by the in-

plane conductivity:  
R||=ln(li /l )/s||d. 

The total incoherent part of conductivity: 

s|| depends on magnetic field  layers 

and has metallic T-dependence.  110 



Strongly incoherent models can explain 

the monotonic growth of MR 

when magnetic field is  layers (parallel to electric current) 

-(BEDT-TTF)2SF5CH2CF2SO3 

F. Zuo et al., PRB 60, 6296 (1999). 
W. Kang et al., PRB 80, 155102 (2009) 

Motivation I20 
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