Intstanton blow up equations and CFT

M. Bershtein, B. Feigin, A. Litvinov

26 June 2013

The main equations

- Let $b_{1}=b / \sqrt{1-b^{2}}, b_{2}=\sqrt{b^{2}-1}, b$ is generic.

Let $P \notin\left\{P_{m, n}\right\}, P_{1}=\sqrt{b^{-1} /\left(b^{-1}-b\right)} P, P_{2}=\sqrt{b /\left(b-b^{-1}\right)} P$.
$\mathbb{F}(P, b ; q)=\sum_{k \in \mathbb{Z}} \frac{q^{k^{2}}}{\rho_{k}^{2}(P, b)} \cdot \mathbb{F}\left(P_{1}+k b_{1}, b_{1} ; \beta_{1} q\right) \cdot \mathbb{F}\left(P_{2}+k b_{2}^{-1}, b_{2} ; \beta_{2} q\right)$,
where $\beta_{1}=\frac{b^{-2}}{\left(b^{-1}-b\right)^{2}}, \beta_{2}=\frac{b^{2}}{\left(b-b^{-1}\right)^{2}}$,

- Nakajima Yoshioka (2003)

$$
\begin{equation*}
Z\left(\epsilon_{1}, \epsilon_{2}, a ; q\right)=\sum_{k \in \mathbb{Z}} \frac{q^{k^{2}}}{I_{k}} Z\left(\epsilon_{1}, \epsilon_{2}-\epsilon_{1}, a+k \epsilon_{1} ; q\right) \cdot Z\left(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}, a+k \epsilon_{2} ; q\right), \tag{2}
\end{equation*}
$$

where $Z\left(\epsilon_{1}, \epsilon_{2}, a ; q\right)$ - Nekrasov partition function

- Alday, Gaiotto, Tachikawa (2009) $b=\sqrt{\epsilon_{1} / \epsilon_{2}}, P=a / \sqrt{\epsilon_{1} \epsilon_{2}}$

$$
\begin{equation*}
F\left(\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}}, \frac{a}{\sqrt{\epsilon_{1} \epsilon_{2}}},\left(\epsilon_{1} \epsilon_{2}\right)^{2} q\right)=Z\left(\epsilon_{1}, \epsilon_{2}, a ; q\right) \tag{3}
\end{equation*}
$$

Virasoro algebra

- By Vir we denote the Virasoro Lie algebra with the generators $L_{n}, n \in \mathbb{Z}, C$ subject of relation:

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{n^{3}-n}{12} C, \quad\left[L_{n}, C\right]=0
$$

- Denote by $\mathrm{V}_{\Delta, c}$ the Verma module of the Virasoro algebra generated by the highest weight vector v :

$$
L_{n} v=0, \text { for } n>0 \quad L_{0} v=\Delta v, C v=c v .
$$

- By $\mathbb{L}_{\Delta, c}$ denote its irreducible quotient.
- It is convenient to parametrize Δ and c as

$$
\Delta=\Delta(P, b)=\frac{\left(b^{-1}+b\right)^{2}}{4}-P^{2}, \quad c=1+6\left(b^{-1}+b\right)^{2}
$$

We denote the corresponding irreducible representation as $\mathbb{L}_{\mathrm{P}, b}$

Whittaker limit of conformal block

- The Whittaker vector $\mathrm{W}=\sum_{N=0} w_{N} q^{N / 2}$, defined by the equations:

$$
L_{0} w_{N}=(\Delta+N) w_{N}, \quad L_{1} w_{N}=w_{N-1}, \quad L_{k} w_{N}=0, \text { for } k>1 .
$$

These equations can be simply rewritten as $L_{1} \mathrm{~W}=q^{1 / 2} \mathrm{~W}, L_{k} \mathrm{~W}=0$, for $k>1$.

- We will always use normalisation of W such that $\left\langle w_{0}, w_{0}\right\rangle=1$. Therefore

$$
\begin{gathered}
w_{0}=v, \quad w_{1}=\frac{1}{2 \Delta} L_{-1} v \\
w_{2}=\frac{c+8 \Delta}{4 \Delta\left(c-10 \Delta+2 c \Delta+10 \Delta^{2}\right)} L_{-1}^{2} v-\frac{3}{c-10 \Delta+2 c \Delta+10 \Delta^{2}} L_{-2} v
\end{gathered}
$$

- The Whittaker vector corresponding to $\mathrm{V}_{\mathrm{P}, b}$ will be denoted by $\mathrm{W}_{\mathrm{P}, b}$.
- The Whittaker limit of the 4 point conformal block defined by:

$$
\begin{gather*}
\mathbb{F}(P, b ; q)=\left\langle\mathrm{W}_{P, b}, \mathrm{~W}_{P, b}\right\rangle=\sum_{N=0}^{\infty}\left\langle w_{P, b, N}, w_{P, b, N}\right\rangle q^{N} \tag{4}\\
\mathbb{F}(P, b ; q)=1+\frac{2}{\left(b+b^{-1}\right)^{2}-4 P^{2}} q+\ldots
\end{gather*}
$$

4 point conformal block

- Correlation functions in Conformal Field Theory is product of structure constants, holomorphic and antiholomorphic functions. This holomorphic function is called conformal block.
- The first nontrivial example is a 4 point conformal block $\mathbb{F}\left(P_{1}, P_{2}, P_{3}, P_{4}, P, b ; q\right)$

The Whittaker limit $\mathbb{F}(P, b ; q)$ defined by $P_{2}, P_{3} \rightarrow \infty$.

- [Dotsenko,Fateev] if $P_{2}=b^{-1}+n b, P=P_{1}+n b$, the function \mathbb{F} is given by n-tuple contour integral (for $n=2$ the \mathbb{F} is a ${ }_{2} F_{1}$.):

$$
\begin{aligned}
\mathbb{F}\left(P_{1}, P_{2}, P_{3}, P_{4}, P, b ; q\right)=\int d t_{1} \ldots & \int d t_{n-1} \\
& \prod_{i} t_{i}^{a}\left(t_{i}-1\right)^{b}\left(t_{i}-q\right)^{c} \prod_{i, j}\left(t_{i}-t_{j}\right)^{g}
\end{aligned}
$$

- If $b^{2}=p / p^{\prime}, \mathcal{M}\left(p, p^{\prime}\right)$ Minimal Model, in particular $\mathcal{M}(3,4)$ - Ising.
- [Gamayun, lorgov, Lisovyy] For $c=1$ we have τ-function of Painleve VI

Nekrasov partition function

- Denote by $M(r, N)$ the moduli space of framed torsion free sheaves on $\mathbb{C P}^{2}$ of rank $r, c_{1}=0, c_{2}=N$.
- This space in a smooth partial compactification of moduli space of $U(r)$ instantons: $F=-* F$
- $M(r, N)$ is smooth manifold of complex dimension $2 r N$.
- There is a natural action of the $r+2$ dimensional torus T on the $M(r, N)$: $\left(\mathbb{C}^{*}\right)^{2}$ acts on the base $\mathbb{C P}^{2}$ and $\left(\mathbb{C}^{*}\right)^{r}$ acts on the framing ant the infinity.
- The Nekrasov partition function for pure Yang-Mills theory is defined as the equivariant volume:

$$
Z\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)=\sum_{N=0}^{\infty} q^{N} \int_{M(r, N)}[1]
$$

where $\vec{a}=\left(a_{1}, \ldots, a_{r}\right)$ and $\epsilon_{1}, \epsilon_{2}, a_{1}, \ldots, a_{r}$ are the coordinates on the $\mathfrak{t}=\operatorname{Lie} T$.

- The last integrals can be computed by localisation method and equal to the sum of contributions of torus fixed points (which are labeled by r-tuple of Young diagrams $\lambda_{1} \ldots, \lambda_{r}$).

Blow up

- Blow up

$$
\widehat{\mathbb{C}^{2}}=\left\{z_{1}, z_{2}, u, v \mid z_{1} v=z_{2} u,(u, v) \neq(0,0)\right\} / \mathrm{GL}(1),
$$

where GL(1) acts by $\left(z_{1}, z_{2}, u, v\right) \rightarrow\left(z_{1}, z_{2}, t u, t v\right)$

- The projection map $\widehat{\pi}: \widehat{\mathbb{C}^{2}} \rightarrow \mathbb{C}^{2},\left(z_{1}, z_{2}, u, v\right) \mapsto\left(z_{1}, z_{2}\right)$

Blow up equations

- Denote by $\widehat{M}(r, k, N)$ moduli space framed torsion free shaeves on $\widehat{\mathbb{C}^{2}}$, $\operatorname{rk}(\mathcal{E})=r, c_{1}(\mathcal{E})=k, c_{2}(\mathcal{E})-\frac{r-1}{2 r} c_{1}(\mathcal{E})^{2}=N$.

$$
\widehat{Z}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)=\sum_{N=0}^{\infty} q^{N} \int_{\widehat{M}(r, 0, N)}
$$

- The manifolds $\widehat{M}(r, 0, N)$ is nonsingular of dimension $2 r N$
- There is a $\operatorname{map} \widehat{\pi}: \widehat{M}(r, 0, N) \rightarrow M_{0}(r, N)$

$$
\widehat{Z}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)=Z\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)
$$

- There are two torus invariant points on the $\widehat{\mathbb{C}^{2}}:(0,0,1,0)$ and $(0,0,0,1)$.
- The torus fixed points on the $\widehat{M}(r, 0, N)$ are labelled by $\vec{\lambda}^{1}, \vec{\lambda}^{2}, k$, such that $N=|\vec{\lambda}|+|\vec{\lambda}|+k^{2}$.

$$
\widehat{Z}\left(\epsilon_{1}, \epsilon_{2}, a ; q\right)=\sum_{k \in \mathbb{Z}} \frac{q^{k^{2}}}{I_{k}} Z\left(\epsilon_{1}, \epsilon_{2}-\epsilon_{1}, a+k \epsilon_{1} ; q\right) \cdot Z\left(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}, a+k \epsilon_{2} ; q\right),
$$

Main Theorem

- Recall that for generic b

$$
\mathbb{F}(P, b ; q)=\sum_{k \in \mathbb{Z}} \frac{q^{k^{2}}}{l_{k}^{2}(P, b)} \cdot \mathbb{F}\left(P_{1}+k b_{1}, b_{1} ; \beta_{1} q\right) \cdot \mathbb{F}\left(P_{2}+k b_{2}^{-1}, b_{2} ; \beta_{2} q\right)
$$

where $b_{1}=b / \sqrt{1-b^{2}}, b_{2}=\sqrt{b^{2}-1} \beta_{1}=\frac{b^{-2}}{\left(b^{-1}-b\right)^{2}}, \beta_{2}=\frac{b^{2}}{\left(b-b^{-1}\right)^{2}}$,

- Denote by \mathcal{M}_{b} the Vertex operator algebra Vir with the central charge $c=1+6\left(b^{-1}+b\right)^{2}$.
- Denote by \mathcal{A}_{b} the product $\mathcal{M}_{b_{1}} \otimes \mathcal{M}_{b_{2}}$ extended by the fields $\Phi_{1,2}^{b_{1}} \otimes \Phi_{2,1}^{b_{2}}$

$$
\mathcal{A}_{b}=\left(\mathbb{L}_{(1,1)}^{b_{1}} \otimes \mathbb{L}_{(1,1)}^{b_{2}}\right) \oplus\left(\mathbb{L}_{(1,3)}^{b_{1}} \otimes \mathbb{L}_{(3,1)}^{b_{2}}\right) \oplus\left(\mathbb{L}_{(1,5)}^{b_{1}} \otimes \mathbb{L}_{(5,1)}^{b_{2}}\right) \oplus \ldots
$$

Theorem

There is an isomorphism of algebras $\mathcal{A}_{b} \cong \mathcal{M}_{b} \otimes \mathcal{U}$

Field $\varphi(z)$

- Let φ_{n} be a generators of the Heisenberg algebra: $\left[\varphi_{n}, \varphi_{m}\right]=n \delta_{m+n, 0}$. It is convenient to consider operators φ_{n} as modes of the bosonic field $\varphi(z)$:

$$
\varphi(z)=\sum_{n \in \mathbb{Z} \backslash 0} \frac{\varphi_{n}}{-n} z^{-n}+\varphi_{0} \log z+\widehat{Q}
$$

where the operator \widehat{Q} is conjugate to the operator $\widehat{P}=\varphi_{0}$, i.e. satisfy the relation: $[\widehat{P}, \widehat{Q}]=1$. The relation of the Heisenberg algebra can be rewritten in terms of operator product expansion:

$$
\varphi(z) \varphi(w)=\log (z-w)+\text { reg. }
$$

- Denote by F_{λ} the Fock representation of the Heisenberg algebra with the highest weight vector v_{λ} :

$$
\varphi_{n} v_{\lambda}=0 \text { for } n>0, \quad \varphi_{0} v_{\lambda}=\lambda v_{\lambda}
$$

Denote by S_{λ} the shift operator $S_{\lambda}: \mathrm{F}_{\mu} \rightarrow \mathrm{F}_{\mu+\lambda}$ defined by

$$
S_{\lambda} v_{\mu}=v_{\mu+\lambda}, \quad\left[S_{\lambda}, \varphi_{n}\right]=0, \text { for } n \neq 0
$$

Actually S_{λ} is just an $\operatorname{exponent} \exp (\lambda \widehat{Q})$.

Lattice $\mathbb{Z} \sqrt{2}$

- The direct sum $V_{\sqrt{2} \mathbb{Z}}:=\bigoplus_{k \in \mathbb{Z}} \mathrm{~F}_{k \sqrt{2}}$ is a vacuum representation of the lattice vertex operator algebra.
- Under the operator-state correspondence the highest weight vectors v_{λ}, $\lambda=k \sqrt{2}$ correspond to

$$
Y\left(v_{\lambda} ; z\right)=: e^{\lambda \varphi}:=S_{\lambda} z^{\lambda \varphi_{0}} \exp \left(\lambda \sum_{n \in \mathbb{Z}_{>0}} \frac{\varphi_{-n}}{n} z^{n}\right) \exp \left(\lambda \sum_{n \in \mathbb{Z}_{>0}} \frac{\varphi_{n}}{-n} z^{-n}\right)
$$

Here and below : denotes the creation-annihilation normal ordering.

- For the more general vectors of the form $v=\varphi_{-m}^{n_{m}} \cdots \varphi_{-1}^{n_{1}} v_{\lambda}$ the corresponding operator have the form:

$$
Y(v ; z)=:\left(\partial^{m} \varphi\right)^{n_{m}} \cdots(\partial \varphi)^{n_{1}} e^{\lambda \varphi}:
$$

- The stress-energy tensor $T(z)=\frac{1}{2}(\partial \varphi)^{2}$ have central charge $c=1$. More general $T(z)=\frac{1}{2}(\partial \varphi)^{2}+u\left(\partial^{2} \varphi\right)$ satisfy stress-energy relation with the central charge $c=1-12 u^{2}$.

\mathcal{U}

- $T(z)$ is called stress-energy tensor, parameter c is called the central charge

$$
\begin{equation*}
T(z) T(w)=\frac{c}{(z-w)^{4}}+\frac{2}{(z-w)^{2}} T(w)+\frac{1}{(z-w)} \partial T(w)+\text { reg. } \tag{5}
\end{equation*}
$$

Definition

The conformal algebra \mathcal{U} coincide with the $V_{\sqrt{2} \mathbb{Z}}$ as the operator algebra, but the stress-energy tensor is modified:

$$
\begin{align*}
& T_{\mathcal{U}}=\frac{1}{2}(\partial \varphi)^{2}+\frac{1}{\sqrt{2}}\left(\partial^{2} \varphi\right)+\epsilon\left(2(\partial \varphi)^{2} e^{\sqrt{2} \varphi}+\sqrt{2}\left(\partial^{2} \varphi\right) e^{\sqrt{2} \varphi}\right)= \\
&=\frac{1}{2} \partial_{z} \varphi(z)^{2}+\frac{1}{\sqrt{2}} \partial_{z}^{2} \varphi(z)+\epsilon \partial_{z}^{2}\left(e^{\sqrt{2} \varphi(z)}\right), \quad \varepsilon \neq 0 \tag{6}
\end{align*}
$$

- The conformal algebras \mathcal{U} isomorphic for different values $\varepsilon \neq 0$. For the $\varepsilon=0$ $T_{\mathcal{U}}(z)$ has the from discussed above form for $u=\frac{1}{\sqrt{2}}$ and central charge -5 .
- The spaces $U_{0}=\bigoplus_{k \in \mathbb{Z}} \mathrm{~F}_{k \sqrt{2}}$ and $U_{1}=\bigoplus_{k \in \mathbb{Z}+1 / 2} \mathrm{~F}_{k \sqrt{2}}$ become a representations of \mathcal{U}.

Picture of \mathcal{U}

Figure: The basic vectors with the lowest L_{0} grading. The left part correspond to the vacuum representation of $V_{\sqrt{2} \mathbb{Z}}$, the right part correspond to the vacuum representaion of \mathcal{U}. Dotted curved arrows shows shift of L_{0} grading to $L_{0}-\frac{1}{\sqrt{2}} \varphi_{0}$.

Minimal midels

- Let $b^{2}=-p / p^{\prime}$. By $\mathcal{A}_{p / p^{\prime}}$ we denote an extension of the product of minimal models $\mathcal{M}_{p /\left(p+p^{\prime}\right)} \otimes \mathcal{M}_{\left(p+p^{\prime}\right) / p^{\prime}}$ by the field $\left.\left.\Phi_{(1,2)}\right)\right] \cdot \Phi_{(2,1)}$.

Conjecture (Theorem)

There is an isomorphism of algebras $\mathcal{A}_{p / p^{\prime}} \cong \mathcal{M}_{p / p^{\prime}} \otimes \mathcal{U}$

- Let $\left(p, p^{\prime}\right)=(2,3)$. Then $c_{2 / 3}=0$, and the $\mathcal{M}_{2 / 3}$ is an empty theory. Therefore $\mathcal{U}=\mathcal{A}_{2 / 3} \supset \mathcal{M}_{2 / 5} \otimes \mathcal{M}_{5 / 3}$

$$
\begin{aligned}
& T_{2 / 5}=-\frac{1}{10 \epsilon} e^{-\sqrt{2} \varphi}+\frac{1}{5}(\partial \varphi)^{2}+\frac{3}{5 \sqrt{2}}\left(\partial^{2} \varphi\right)+\frac{12 \epsilon}{5}(\partial \varphi)^{2} e^{\sqrt{2} \varphi}+\frac{3 \sqrt{2} \epsilon}{5}\left(\partial^{2} \varphi\right) e^{\sqrt{2} \varphi}-\frac{12 \epsilon^{2}}{5} e^{2 \sqrt{2} \varphi} \\
& T_{5 / 3}=\frac{1}{10 \epsilon} e^{-\sqrt{2} \varphi}+\frac{3}{10}(\partial \varphi)^{2}+\frac{2}{5 \sqrt{2}}\left(\partial^{2} \varphi\right)-\frac{2 \epsilon}{5}(\partial \varphi)^{2} e^{\sqrt{2} \varphi}+\frac{2 \sqrt{2} \epsilon}{5}\left(\partial^{2} \varphi\right) e^{\sqrt{2} \varphi}+\frac{12 \epsilon^{2}}{5} e^{2 \sqrt{2} \varphi} .
\end{aligned}
$$

Direct calculation shows that $T_{2 / 5}$ and $T_{5 / 3}$ commute and satisfy (5) with the central charges $c_{2 / 5}=-\frac{22}{5}$ and $c_{5 / 3}=-\frac{3}{5}$ correspondingly. It is clear that

$$
T_{\mathcal{U}}=T_{2 / 5}+T_{5 / 3}
$$

$\mathcal{A}_{b}=\mathcal{U} \otimes \mathcal{M}_{b}$

- Recall that \mathcal{A}_{b} is an extension of the product $\mathcal{M}_{b_{1}} \otimes \mathcal{M}_{b_{2}}$.
- One can find this to commution Virasoro algebras in the product $\mathcal{U} \otimes \mathcal{M}_{b}$

$$
\begin{aligned}
& T_{b_{1}}=\frac{b+b^{-1}}{2\left(b-b^{-1}\right) \epsilon} e^{-\sqrt{2} \varphi}+\frac{b}{2\left(b-b^{-1}\right)}(\partial \varphi)^{2}-\frac{b^{-1}}{\sqrt{2}\left(b-b^{-1}\right)} \partial^{2} \varphi- \\
& \quad-\frac{\left(1+2 b^{-2}\right) \epsilon}{b^{2}-b^{-2}}(\partial \varphi)^{2} e^{\sqrt{2} \varphi}-\frac{\sqrt{2} b^{-1} \epsilon}{b-b^{-1}}\left(\partial^{2} \varphi\right) e^{\sqrt{2} \varphi}-\frac{2 \epsilon^{2}}{b^{2}-b^{-2}} e^{2 \sqrt{2} \varphi}- \\
& \\
& \quad-\frac{b^{-1}}{b-b^{-1}} T_{b}-\frac{2 \epsilon}{b^{2}-b^{-2}} T_{b} e^{\sqrt{2} \varphi}
\end{aligned}
$$

$$
T_{b_{2}}=-\frac{b+b^{-1}}{2\left(b-b^{-1}\right) \epsilon} e^{-\sqrt{2} \varphi}-\frac{b^{-1}}{2\left(b-b^{-1}\right)}(\partial \varphi)^{2}+\frac{b}{\sqrt{2}\left(b-b^{-1}\right)} \partial^{2} \varphi+
$$

$$
\begin{array}{r}
+\frac{\left(2 b^{2}+1\right) \epsilon}{b^{2}-b^{-2}}(\partial \varphi)^{2} e^{\sqrt{2} \varphi}+\frac{\sqrt{2} b \epsilon}{b-b^{-1}}\left(\partial^{2} \varphi\right) e^{\sqrt{2} \varphi}+\frac{2 \epsilon^{2}}{b^{2}-b^{-2}} e^{2 \sqrt{2} \varphi}+ \\
+\frac{b}{b-b^{-1}} T_{b}+\frac{2 \epsilon}{b^{2}-b^{-2}} T_{b} e^{\sqrt{2} \varphi}
\end{array}
$$

- $T_{b_{1}}$ and $T_{b_{2}}$ commute and sutisfy (5). The sum $T_{b_{1},}+T_{b_{2}}=T_{\mathcal{U}_{1}}+T_{b^{\underline{\underline{\beta}}}}$

Representations of $\mathcal{A}_{b}=U \otimes \mathcal{M}_{b}$

- Let $P \notin\left\{P_{m, n}\right\}, P_{1}=\sqrt{b^{-1} /\left(b^{-1}-b\right)} P, P_{2}=\sqrt{b /\left(b-b^{-1}\right)} P$.

Theorem

There is an isomorphism of representations:

$$
\begin{aligned}
& U_{1} \otimes \mathbb{L}_{\mathrm{P}, b}=\bigoplus_{k \in \mathbb{Z}} \mathbb{L}_{\left(\mathrm{P}_{1}+k b_{1}\right), b_{1}} \otimes \mathbb{L}_{\left(\mathrm{P}_{2}+k b_{2}^{-1}\right), b_{2}}, \\
& U_{0} \otimes \mathbb{L}_{\mathrm{P}, b}=\bigoplus_{k \in \mathbb{Z}+\frac{1}{2}} \mathbb{L}_{\left(\mathrm{P}_{1}+k b_{1}\right), b_{1}} \otimes \mathbb{L}_{\left(\mathrm{P}_{2}+k b_{2}^{-1}\right), b_{2}}
\end{aligned}
$$

- The Whittaker vector

$$
v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{\mathrm{P}, b}(q)=\sum_{k \in \mathbb{Z}} \frac{q^{k^{2} / 2}}{I_{k}(P, b)}\left(\mathrm{W}_{P_{1}+k b_{1}, b_{1}}\left(\beta_{1} q\right) \otimes \mathrm{W}_{P_{2}+k b_{2}^{-1}, b_{2}}\left(\beta_{2} q\right)\right)
$$

where $\beta_{1}=\frac{b^{-2}}{\left(b^{-1}-b\right)^{2}}, \beta_{2}=\frac{b^{2}}{\left(b-b^{-1}\right)^{2}}$
$\mathbb{F}(P, b ; q)=\sum_{k \in \mathbb{Z}} \frac{q^{k^{2}}}{I_{k}(P, b)^{2}} \cdot \mathbb{F}\left(P_{1}+k b_{1}, b_{1} ; \beta_{1} q\right) \cdot \mathbb{F}\left(P_{2}+k b_{2}^{-1}, b_{2} ; \beta_{2} q\right)$,

Differential equations

- Consider the operator $H=b L_{0}^{b_{1}}+b^{-1} L_{0}^{b_{2}}$. The corresponding local operator have the form:

$$
\begin{align*}
b T_{b_{1}}+b^{-1} T_{b_{2}}=\frac{b+b^{-1}}{2 \epsilon} e^{-\sqrt{2} \varphi} & +\frac{b+b^{-1}}{2}(\partial \varphi)^{2}+\left(b+b^{-1}\right) \epsilon(\partial \varphi)^{2} e^{\sqrt{2} \varphi} \\
& -\frac{2 \epsilon^{2}}{b+b^{-1}} e^{2 \sqrt{2} \varphi}-\frac{2 \epsilon}{b+b^{-1}} T_{b} e^{\sqrt{2} \varphi} \tag{7}
\end{align*}
$$

- Define the function $\widehat{\mathbb{F}}$ by:

$$
\widehat{\mathbb{F}}(P, b ; q, t)=\sum_{k=0}^{\infty} \widehat{\mathbb{F}}_{m}(P, b ; q) \frac{t^{m}}{m!}=\left\langle v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{\mathrm{P}, b}, e^{t H}\left(v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{\mathrm{P}, b}\right)\right\rangle
$$

- It is clear from the definition of operator H that:

$$
\begin{aligned}
& \widehat{\mathbb{F}}(P, b ; q, t)=\sum_{k \in \mathbb{Z}} \frac{q^{k^{2}}}{l_{k}(P, b)} \cdot e^{t b \Delta_{k}^{1}} \mathbb{F}\left(P+k b_{1}, b_{1} ; \beta_{1} q e^{t b}\right) \\
& \cdot e^{t b^{-1} \Delta_{k}^{2}} \mathbb{F}\left(P_{2}+k b_{2}^{-1}, b_{2} ; \beta_{2} q e^{t b^{-1}}\right)
\end{aligned}
$$

where $\Delta_{k}^{1}=\Delta\left(P_{1}+k b_{1}, b_{1}\right)$ and $\Delta_{k}^{2}=\Delta\left(P_{2}+k b_{2}^{-1}, b_{2}\right)$.

- We will use generalized Hirota-differential [?]:

$$
\left(D_{x}^{\left(\epsilon_{1}, \epsilon_{2}\right)}\right)^{m}(f \cdot g)=\left.\left(\frac{d}{d y}\right)^{m} f\left(x+\epsilon_{1} y\right) g\left(x+\epsilon_{2} y\right)\right|_{y=0}
$$

- Therefore:

$$
\widehat{\mathbb{F}}_{m}(P, b ; q)=\sum_{k \in \mathbb{Z}} \frac{q^{1 / 4-\Delta(P, b)}}{l_{k}(P, b)}\left(D_{\log q}^{\left(b, b^{-1}\right)}\right)^{m}\left(q ^ { \Delta _ { k } ^ { 1 } \mathbb { F } } (P + k b _ { 1 } , b _ { 1 } ; \beta _ { 1 } q) \cdot q ^ { \Delta _ { k } ^ { 2 } \mathbb { F } } \left(P_{2}\right.\right.
$$

where we used that $\Delta_{k}^{1}+\Delta_{k}^{2}=\Delta(P, b)-1 / 4+k^{2}$.

- It is easy to see that:

$$
H\left(v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{\mathrm{P}, b}\right)=\frac{b+b^{-1}}{4}\left(v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{\mathrm{P}, b}\right)+\frac{-2 \epsilon q^{1 / 2}}{b+b^{-1}}\left(v_{3 / \sqrt{2}} \otimes \mathrm{~W}_{\mathrm{P}, b}\right)
$$

But the vectors $v_{3 / \sqrt{2}}$ and $v_{1 / \sqrt{2}}$ are orthogonal, hence we have:

$$
\begin{equation*}
\widehat{\mathbb{F}}_{1}(P, b ; q)=\left\langle v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{\mathrm{P}, b}, H\left(v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{\mathrm{P}, b}\right)\right\rangle=\frac{b+b^{-1}}{4} \widehat{\mathbb{F}}_{0}(P, b ; q) \tag{8}
\end{equation*}
$$

$$
\widehat{\mathbb{F}}_{m}(P, b ; q)=\left\langle v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{P, b}, H^{m}\left(v_{\sqrt{1 / 2}} \otimes \mathrm{~W}_{\mathrm{P}, b}\right)\right\rangle=\frac{b+b^{-1}}{4} \widehat{\mathbb{F}}_{0}(P, b ; q)
$$

Similarly applying H one can prove that:

$$
\begin{align*}
& \widehat{\mathbb{F}}_{1}(P, b ; q)=\frac{b+b^{-1}}{4} \widehat{\mathbb{F}}_{0}(P, b ; q) \tag{9}\\
& \widehat{\mathbb{F}}_{2}(P, b ; q)=\left(\frac{b+b^{-1}}{4}\right)^{2} \widehat{\mathbb{F}}_{0}(P, b ; q), \tag{10}\\
& \widehat{\mathbb{F}}_{3}(P, b ; q)=\left(\frac{b+b^{-1}}{4}\right)^{3} \widehat{\mathbb{F}}_{0}(P, b ; q) \tag{11}\\
& \widehat{\mathbb{F}}_{4}(P, b ; q)=\left(\frac{b+b^{-1}}{4}\right)^{4} \widehat{\mathbb{F}}_{0}(P, b ; q)-2 q \widehat{\mathbb{F}}_{0}(P, b ; q) \\
& \widehat{\mathbb{F}}_{5}(P, b ; q)=\left(\frac{b+b^{-1}}{4}\right)^{5} \widehat{\mathbb{F}}_{0}(P, b ; q)-\frac{17}{2}\left(b+b^{-1}\right) q \widehat{\mathbb{F}}_{0}(P, b ; q) \\
& \widehat{\mathbb{F}}_{6}(P, b ; q)=\left(\frac{b+b^{-1}}{4}\right)^{6} \widehat{\mathbb{F}}_{0}(P, b ; q)-\frac{183\left(b+b^{-1}\right)^{2}}{8} q \widehat{\mathbb{F}}_{0}(P, b ; q)+ \\
& 8 q^{3-\Delta(P, b)} \partial_{q}\left(q^{\Delta(P, b)} \widehat{\mathbb{F}}_{0}^{\prime}(P, b ; q)\right)
\end{align*}
$$

