Intstanton blow up equations and CFT

M. Bershtein, B. Feigin, A. Litvinov

26 June 2013

M. Bershtein, B. Feigin, A. Litvinov ()

Intstanton blow up equations and CFT

26 June 2013 1 / 19

・ロト ・ 日 ・ ・ 目 ・ ・

The main equations

• Let
$$b_1 = b/\sqrt{1-b^2}$$
, $b_2 = \sqrt{b^2-1}$, *b* is generic.
Let $P \notin \{P_{m,n}\}$, $P_1 = \sqrt{b^{-1}/(b^{-1}-b)}P$, $P_2 = \sqrt{b/(b-b^{-1})}P$.

$$\mathbb{F}(P,b;q) = \sum_{k\in\mathbb{Z}} \frac{q^{k^2}}{l_k^2(P,b)} \cdot \mathbb{F}\left(P_1 + kb_1, b_1; \beta_1 q\right) \cdot \mathbb{F}\left(P_2 + kb_2^{-1}, b_2; \beta_2 q\right), \quad (1)$$

where
$$\beta_1 = \frac{b^{-2}}{(b^{-1} - b)^2}$$
, $\beta_2 = \frac{b^2}{(b - b^{-1})^2}$,

Nakajima Yoshioka (2003)

$$Z(\epsilon_1, \epsilon_2, \mathbf{a}; \mathbf{q}) = \sum_{k \in \mathbb{Z}} \frac{q^{k^2}}{l_k} Z(\epsilon_1, \epsilon_2 - \epsilon_1, \mathbf{a} + k\epsilon_1; \mathbf{q}) \cdot Z(\epsilon_1 - \epsilon_2, \epsilon_2, \mathbf{a} + k\epsilon_2; \mathbf{q}), \quad (2)$$

where $Z(\epsilon_1, \epsilon_2, a; q)$ — Nekrasov partition function • Alday, Gaiotto, Tachikawa (2009) $b = \sqrt{\epsilon_1/\epsilon_2}$, $P = a/\sqrt{\epsilon_1\epsilon_2}$

$$F(\sqrt{\frac{\epsilon_1}{\epsilon_2}}, \frac{a}{\sqrt{\epsilon_1\epsilon_2}}, (\epsilon_1\epsilon_2)^2 q) = Z(\epsilon_1, \epsilon_2, a; q),$$
(3)

• By Vir we denote the Virasoro Lie algebra with the generators *L_n*, *n* ∈ ℤ, *C* subject of relation:

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{n^3 - n}{12}C, \quad [L_n, C] = 0$$

 Denote by V_{Δ,c} the Verma module of the Virasoro algebra generated by the highest weight vector v:

$$L_n v = 0$$
, for $n > 0$ $L_0 v = \Delta v$, $Cv = cv$.

- By $\mathbb{L}_{\Delta,c}$ denote its irreducible quotient.
- It is convenient to parametrize Δ and c as

$$\Delta = \Delta(P, b) = rac{(b^{-1} + b)^2}{4} - P^2, \qquad c = 1 + 6(b^{-1} + b)^2$$

We denote the corresponding irreducible representation as $\mathbb{L}_{P,b}$

イロト イヨト イヨト イヨ

Whittaker limit of conformal block

• The Whittaker vector $W = \sum_{N=0} w_N q^{N/2}$, defined by the equations:

$$L_0 w_N = (\Delta + N) w_N, \quad L_1 w_N = w_{N-1}, \quad L_k w_N = 0, \text{for } k > 1.$$

These equations can be simply rewritten as $L_1W = q^{1/2}W$, $L_kW = 0$, for k > 1.

• We will always use normalisation of W such that $\langle w_0, w_0
angle = 1$. Therefore

$$w_{0} = v, \qquad w_{1} = \frac{1}{2\Delta}L_{-1}v$$
$$w_{2} = \frac{c + 8\Delta}{4\Delta(c - 10\Delta + 2c\Delta + 10\Delta^{2})}L_{-1}^{2}v - \frac{3}{c - 10\Delta + 2c\Delta + 10\Delta^{2}}L_{-2}v$$

- $\bullet\,$ The Whittaker vector corresponding to ${\rm V}_{{\rm P},b}$ will be denoted by $W_{{\rm P},b}.$
- The Whittaker limit of the 4 point conformal block defined by:

$$\mathbb{F}(P,b;q) = \langle \mathsf{W}_{\mathrm{P},b}, \mathsf{W}_{\mathrm{P},b} \rangle = \sum_{N=0}^{\infty} \langle w_{\mathrm{P},b,N}, w_{\mathrm{P},b,N} \rangle q^{N}$$
(4)

$$\mathbb{F}(P, b; q) = 1 + \frac{2}{(b+b^{-1})^2 - 4P^2}q + \dots$$

4 point conformal block

- Correlation functions in Conformal Field Theory is product of structure constants, holomorphic and antiholomorphic functions. This holomorphic function is called *conformal block*.
- The first nontrivial example is a 4 point conformal block $\mathbb{F}(P_1, P_2, P_3, P_4, P, b; q)$

$$P_2$$
 P_3
 P_1 P P_4

The Whittaker limit $\mathbb{F}(P, b; q)$ defined by $P_2, P_3 \rightarrow \infty$.

• [Dotsenko,Fateev] if $P_2 = b^{-1} + nb$, $P = P_1 + nb$, the function \mathbb{F} is given by *n*-tuple contour integral (for n = 2 the \mathbb{F} is a $_2F_1$.):

$$\mathbb{F}(P_1, P_2, P_3, P_4, P, b; q) = \int dt_1 \dots \int dt_{n-1} \prod_i t_i^a (t_i - 1)^b (t_i - q)^c \prod_{i,j} (t_i - t_j)^g$$

If b² = p/p', M(p, p') Minimal Model, in particular M(3,4) — Ising.
[Gamayun, lorgov, Lisovyy] For c = 1 we have τ-function of Painleve VI

Nekrasov partition function

- Denote by M(r, N) the moduli space of framed torsion free sheaves on CP² of rank r, c₁ = 0, c₂ = N.
- This space in a smooth partial compactification of *moduli space of U(r) instantons*: F = - * F
- M(r, N) is smooth manifold of complex dimension 2rN.
- There is a natural action of the r + 2 dimensional torus T on the M(r, N): $(\mathbb{C}^*)^2$ acts on the base \mathbb{CP}^2 and $(\mathbb{C}^*)^r$ acts on the framing ant the infinity.
- The Nekrasov partition function for pure Yang-Mills theory is defined as the equivariant volume:

$$Z(\epsilon_1,\epsilon_2,ec{a};q) = \sum_{N=0}^\infty q^N \int_{M(r,N)} [1],$$

where $\vec{a} = (a_1, \ldots, a_r)$ and $\epsilon_1, \epsilon_2, a_1, \ldots, a_r$ are the coordinates on the $\mathfrak{t} = \text{Lie}T$.

The last integrals can be computed by localisation method and equal to the sum of contributions of torus fixed points (which are labeled by *r*-tuple of Young diagrams λ₁..., λ_r).

Blow up

Blow up

$$\widehat{\mathbb{C}^2} = \left\{ z_1, z_2, u, v | z_1 v = z_2 u, (u, v) \neq (0, 0) \right\} \Big/ \operatorname{GL}(1),$$

where $\operatorname{GL}(1)$ acts by $(z_1, z_2, u, v) \rightarrow (z_1, z_2, tu, tv)$

• The projection map $\widehat{\pi}\colon \widehat{\mathbb{C}^2} o \mathbb{C}^2$, $(z_1,z_2,u,v)\mapsto (z_1,z_2)$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Blow up equations

• Denote by $\widehat{M}(r, k, N)$ moduli space framed torsion free shaeves on $\widehat{\mathbb{C}}^2$, $\operatorname{rk}(\mathcal{E}) = r$, $c_1(\mathcal{E}) = k$, $c_2(\mathcal{E}) - \frac{r-1}{2r}c_1(\mathcal{E})^2 = N$.

$$\widehat{Z}(\epsilon_1,\epsilon_2,ec{a};q) = \sum_{N=0}^{\infty} q^N \int_{\widehat{M}(r,0,N)} [1],$$

- The manifolds $\widehat{M}(r, 0, N)$ is nonsingular of dimension 2rN
- There is a map $\widehat{\pi} \colon \widehat{M}(r,0,N) o M_0(r,N)$

$$\widehat{Z}(\epsilon_1,\epsilon_2,\vec{a};q)=Z(\epsilon_1,\epsilon_2,\vec{a};q)$$

- There are two torus invariant points on the $\widehat{\mathbb{C}^2}$: (0,0,1,0) and (0,0,0,1).
- The torus fixed points on the $\widehat{M}(r, 0, N)$ are labelled by $\vec{\lambda}^1, \vec{\lambda}^2, k$, such that $N = |\vec{\lambda}| + |\vec{\lambda}| + k^2$.

$$\widehat{Z}(\epsilon_1,\epsilon_2,\mathsf{a};q) = \sum_{k\in\mathbb{Z}} \frac{q^{k^2}}{l_k} Z(\epsilon_1,\epsilon_2-\epsilon_1,\mathsf{a}+k\epsilon_1;q) \cdot Z(\epsilon_1-\epsilon_2,\epsilon_2,\mathsf{a}+k\epsilon_2;q),$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main Theorem

• Recall that for generic b

$$\mathbb{F}(P,b;q) = \sum_{k\in\mathbb{Z}} \frac{q^{k^2}}{l_k^2(P,b)} \cdot \mathbb{F}\left(P_1 + kb_1, b_1; \beta_1 q\right) \cdot \mathbb{F}\left(P_2 + kb_2^{-1}, b_2; \beta_2 q\right),$$

where
$$b_1 = b/\sqrt{1-b^2}$$
, $b_2 = \sqrt{b^2-1} \ \beta_1 = \frac{b^{-2}}{(b^{-1}-b)^2}$, $\beta_2 = \frac{b^2}{(b-b^{-1})^2}$,

- Denote by \mathcal{M}_b the Vertex operator algebra Vir with the central charge $c = 1 + 6(b^{-1} + b)^2$.
- Denote by \mathcal{A}_b the product $\mathcal{M}_{b_1}\otimes \mathcal{M}_{b_2}$ extended by the fields $\Phi_{1,2}^{b_1}\otimes \Phi_{2,1}^{b_2}$

$$\mathcal{A}_b = \left(\mathbb{L}_{(1,1)}^{b_1} \otimes \mathbb{L}_{(1,1)}^{b_2} \right) \oplus \left(\mathbb{L}_{(1,3)}^{b_1} \otimes \mathbb{L}_{(3,1)}^{b_2} \right) \oplus \left(\mathbb{L}_{(1,5)}^{b_1} \otimes \mathbb{L}_{(5,1)}^{b_2} \right) \oplus \dots$$

Theorem

There is an isomorphism of algebras $\mathcal{A}_b \cong \mathcal{M}_b \otimes \mathcal{U}$

M. Bershtein, B. Feigin, A. Litvinov ()

・ロト ・ 日 ・ ・ 目 ・ ・

Field $\varphi(z)$

Let φ_n be a generators of the Heisenberg algebra: [φ_n, φ_m] = nδ_{m+n,0}.
 It is convenient to consider operators φ_n as modes of the bosonic field φ(z):

$$arphi(z) = \sum_{n \in \mathbb{Z} \setminus 0} rac{arphi_n}{-n} z^{-n} + arphi_0 \log z + \widehat{Q},$$

where the operator \widehat{Q} is conjugate to the operator $\widehat{P} = \varphi_0$, i.e. satisfy the relation: $[\widehat{P}, \widehat{Q}] = 1$. The relation of the Heisenberg algebra can be rewritten in terms of operator product expansion:

$$\varphi(z)\varphi(w) = \log(z - w) + \operatorname{reg.}$$

 Denote by F_λ the Fock representation of the Heisenberg algebra with the highest weight vector v_λ:

$$\varphi_n v_\lambda = 0 \text{ for } n > 0, \quad \varphi_0 v_\lambda = \lambda v_\lambda.$$

Denote by \mathcal{S}_{λ} the shift operator $\mathcal{S}_{\lambda} \colon \mathrm{F}_{\mu} o \mathrm{F}_{\mu+\lambda}$ defined by

$$S_{\lambda}v_{\mu} = v_{\mu+\lambda}, \qquad [S_{\lambda}, \varphi_n] = 0, \text{ for } n \neq 0$$

Actually S_{λ} is just an exponent $\exp(\lambda \widehat{Q})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Lattice $\mathbb{Z}\sqrt{2}$

- The direct sum $V_{\sqrt{2\mathbb{Z}}} := \bigoplus_{k \in \mathbb{Z}} F_{k\sqrt{2}}$ is a vacuum representation of the lattice vertex operator algebra.
- Under the operator-state correspondence the highest weight vectors v_{λ} , $\lambda = k\sqrt{2}$ correspond to

$$Y(v_{\lambda};z) =: e^{\lambda \varphi} := S_{\lambda} z^{\lambda \varphi_0} \exp\left(\lambda \sum_{n \in \mathbb{Z}_{>0}} \frac{\varphi_{-n}}{n} z^n\right) \exp\left(\lambda \sum_{n \in \mathbb{Z}_{>0}} \frac{\varphi_n}{-n} z^{-n}\right),$$

Here and below : ... : denotes the creation-annihilation normal ordering.

• For the more general vectors of the form $v = \varphi_{-m}^{n_m} \cdots \varphi_{-1}^{n_1} v_{\lambda}$ the corresponding operator have the form:

$$Y(v;z) =: (\partial^m \varphi)^{n_m} \cdots (\partial \varphi)^{n_1} e^{\lambda \varphi}:$$

• The stress-energy tensor $T(z) = \frac{1}{2}(\partial \varphi)^2$ have central charge c = 1. More general $T(z) = \frac{1}{2}(\partial \varphi)^2 + u(\partial^2 \varphi)$ satisfy stress-energy relation with the central charge $c = 1 - 12u^2$.

イロト イヨト イヨト イヨト

• T(z) is called stress-energy tensor, parameter c is called the central charge

$$T(z)T(w) = \frac{c}{(z-w)^4} + \frac{2}{(z-w)^2}T(w) + \frac{1}{(z-w)}\partial T(w) + \text{reg.}$$
(5)

Definition

The conformal algebra ${\mathcal U}$ coincide with the $V_{\sqrt{2}\mathbb{Z}}$ as the operator algebra, but the stress–energy tensor is modified:

$$T_{\mathcal{U}} = \frac{1}{2} (\partial \varphi)^2 + \frac{1}{\sqrt{2}} (\partial^2 \varphi) + \epsilon \left(2(\partial \varphi)^2 e^{\sqrt{2}\varphi} + \sqrt{2}(\partial^2 \varphi) e^{\sqrt{2}\varphi} \right) =$$
$$= \frac{1}{2} \partial_z \varphi(z)^2 + \frac{1}{\sqrt{2}} \partial_z^2 \varphi(z) + \epsilon \partial_z^2 (e^{\sqrt{2}\varphi(z)}), \quad \varepsilon \neq 0 \quad (6)$$

- The conformal algebras \mathcal{U} isomorphic for different values $\varepsilon \neq 0$. For the $\varepsilon = 0$ $T_{\mathcal{U}}(z)$ has the from discussed above form for $u = \frac{1}{\sqrt{2}}$ and central charge -5.
- The spaces $U_0 = \bigoplus_{k \in \mathbb{Z}} F_{k\sqrt{2}}$ and $U_1 = \bigoplus_{k \in \mathbb{Z}+1/2} F_{k\sqrt{2}}$ become a representations of \mathcal{U} .

Figure: The basic vectors with the lowest L_0 grading. The left part correspond to the vacuum representation of $V_{\sqrt{2}\mathbb{Z}}$, the right part correspond to the vacuum representation of \mathcal{U} . Dotted curved arrows shows shift of L_0 grading to $L_0 - \frac{1}{\sqrt{2}}\varphi_0$.

< □ > < ^[] >

Minimal midels

• Let $b^2 = -p/p'$. By $\mathcal{A}_{p/p'}$ we denote an extension of the product of minimal models $\mathcal{M}_{p/(p+p')} \otimes \mathcal{M}_{(p+p')/p'}$ by the field $\Phi_{(1,2)})] \cdot \Phi_{(2,1)}$.

Conjecture (Theorem)

There is an isomorphism of algebras $\mathcal{A}_{p/p'}\cong \mathcal{M}_{p/p'}\otimes \mathcal{U}$

• Let (p, p') = (2, 3). Then $c_{2/3} = 0$, and the $\mathcal{M}_{2/3}$ is an empty theory. Therefore $\mathcal{U} = \mathcal{A}_{2/3} \supset \mathcal{M}_{2/5} \otimes \mathcal{M}_{5/3}$

$$T_{2/5} = -\frac{1}{10\epsilon}e^{-\sqrt{2}\varphi} + \frac{1}{5}(\partial\varphi)^2 + \frac{3}{5\sqrt{2}}(\partial^2\varphi) + \frac{12\epsilon}{5}(\partial\varphi)^2e^{\sqrt{2}\varphi} + \frac{3\sqrt{2}\epsilon}{5}(\partial^2\varphi)e^{\sqrt{2}\varphi} - \frac{12\epsilon^2}{5}e^{2\sqrt{2}\varphi}$$

$$T_{5/3} = \frac{1}{10\epsilon} e^{-\sqrt{2}\varphi} + \frac{3}{10} (\partial\varphi)^2 + \frac{2}{5\sqrt{2}} (\partial^2\varphi) - \frac{2\epsilon}{5} (\partial\varphi)^2 e^{\sqrt{2}\varphi} + \frac{2\sqrt{2}\epsilon}{5} (\partial^2\varphi) e^{\sqrt{2}\varphi} + \frac{12\epsilon^2}{5} e^{2\sqrt{2}\varphi}.$$

Direct calculation shows that $T_{2/5}$ and $T_{5/3}$ commute and satisfy (5) with the central charges $c_{2/5} = -\frac{22}{5}$ and $c_{5/3} = -\frac{3}{5}$ correspondingly. It is clear that

$$T_{\mathcal{U}} = T_{2/5} + T_{5/3}.$$

イロト イヨト イヨト イヨト

$\mathcal{A}_b = \mathcal{U} \otimes \mathcal{M}_b$

- Recall that \mathcal{A}_b is an extension of the product $\mathcal{M}_{b_1} \otimes \mathcal{M}_{b_2}$.
- $\bullet\,$ One can find this to commution Virasoro algebras in the product $\mathcal{U}\otimes\mathcal{M}_b$

$$T_{b_{1}} = \frac{b+b^{-1}}{2(b-b^{-1})\epsilon}e^{-\sqrt{2}\varphi} + \frac{b}{2(b-b^{-1})}(\partial\varphi)^{2} - \frac{b^{-1}}{\sqrt{2}(b-b^{-1})}\partial^{2}\varphi - - \frac{(1+2b^{-2})\epsilon}{b^{2}-b^{-2}}(\partial\varphi)^{2}e^{\sqrt{2}\varphi} - \frac{\sqrt{2}b^{-1}\epsilon}{b-b^{-1}}(\partial^{2}\varphi)e^{\sqrt{2}\varphi} - \frac{2\epsilon^{2}}{b^{2}-b^{-2}}e^{2\sqrt{2}\varphi} - - \frac{b^{-1}}{b-b^{-1}}T_{b} - \frac{2\epsilon}{b^{2}-b^{-2}}T_{b}e^{\sqrt{2}\varphi}$$

$$T_{b_2} = -\frac{b+b^{-1}}{2(b-b^{-1})\epsilon}e^{-\sqrt{2}\varphi} - \frac{b^{-1}}{2(b-b^{-1})}(\partial\varphi)^2 + \frac{b}{\sqrt{2}(b-b^{-1})}\partial^2\varphi + + \frac{(2b^2+1)\epsilon}{b^2-b^{-2}}(\partial\varphi)^2e^{\sqrt{2}\varphi} + \frac{\sqrt{2}b\epsilon}{b-b^{-1}}(\partial^2\varphi)e^{\sqrt{2}\varphi} + \frac{2\epsilon^2}{b^2-b^{-2}}e^{2\sqrt{2}\varphi} + + \frac{b}{b-b^{-1}}T_b + \frac{2\epsilon}{b^2-b^{-2}}T_be^{\sqrt{2}\varphi}$$

• T_{b_1} and T_{b_2} commute and sutisfy (5). The sum $T_{b_1} + T_{b_2} = T_{\mathcal{U}} + T_{b_2}$

Representations of $\mathcal{A}_b = U \otimes \mathcal{M}_b$

• Let
$$P \notin \{P_{m,n}\}$$
, $P_1 = \sqrt{b^{-1}/(b^{-1}-b)}P$, $P_2 = \sqrt{b/(b-b^{-1})}P$.

Theorem

There is an isomorphism of representations:

$$U_1\otimes \mathbb{L}_{\mathbb{P},b}= igoplus_{k\in \mathbb{Z}}\mathbb{L}_{(\mathbb{P}_1+kb_1),b_1}\otimes \mathbb{L}_{\left(\mathbb{P}_2+kb_2^{-1}
ight),b_2},$$

$$U_0\otimes \mathbb{L}_{\mathrm{P},b}=igoplus_{k\in\mathbb{Z}+rac{1}{2}}\mathbb{L}_{(\mathrm{P}_1+kb_1),b_1}\otimes \mathbb{L}_{\left(\mathrm{P}_2+kb_2^{-1}
ight),b_2}.$$

The Whittaker vector

$$v_{\sqrt{1/2}} \otimes W_{P,b}(q) = \sum_{k \in \mathbb{Z}} \frac{q^{k^2/2}}{l_k(P,b)} \left(W_{P_1+kb_1,b_1}(\beta_1 q) \otimes W_{P_2+kb_2^{-1},b_2}(\beta_2 q) \right),$$

where $\beta_1 = \frac{b^{-2}}{(b^{-1}-b)^2}, \ \beta_2 = \frac{b^2}{(b-b^{-1})^2}$

$$\mathbb{F}(P,b;q) = \sum_{k \in \mathbb{Z}} \frac{q^k}{l_k(P,b)^2} \cdot \mathbb{F}\left(P_1 + kb_1, b_1; \beta_1 q\right) \cdot \mathbb{F}\left(P_2 + kb_2^{-1}, b_2; \beta_2 q\right),$$

Differential equations

• Consider the operator $H = bL_0^{b_1} + b^{-1}L_0^{b_2}$. The corresponding local operator have the form:

$$bT_{b_1} + b^{-1}T_{b_2} = \frac{b + b^{-1}}{2\epsilon}e^{-\sqrt{2}\varphi} + \frac{b + b^{-1}}{2}(\partial\varphi)^2 + (b + b^{-1})\epsilon(\partial\varphi)^2e^{\sqrt{2}\varphi} - \frac{2\epsilon^2}{b + b^{-1}}e^{2\sqrt{2}\varphi} - \frac{2\epsilon}{b + b^{-1}}T_be^{\sqrt{2}\varphi}$$
(7)

• Define the function $\widehat{\mathbb{F}}$ by:

$$\widehat{\mathbb{F}}(P,b;q,t) = \sum_{k=0}^{\infty} \widehat{\mathbb{F}}_m(P,b;q) \frac{t^m}{m!} = \left\langle v_{\sqrt{1/2}} \otimes \mathsf{W}_{\mathrm{P},b}, e^{tH} \left(v_{\sqrt{1/2}} \otimes \mathsf{W}_{\mathrm{P},b} \right) \right\rangle$$

• It is clear from the definition of operator *H* that:

$$\widehat{\mathbb{F}}(P, b; q, t) = \sum_{k \in \mathbb{Z}} \frac{q^{k^2}}{l_k(P, b)} \cdot e^{tb\Delta_k^1} \mathbb{F}\left(P + kb_1, b_1; \beta_1 q e^{tb}\right)$$
$$\cdot e^{tb^{-1}\Delta_k^2} \mathbb{F}\left(P_2 + kb_2^{-1}, b_2; \beta_2 q e^{tb^{-1}}\right),$$
where $\Delta_k^1 = \Delta(P_1 + kb_1, b_1)$ and $\Delta_k^2 = \Delta(P_2 + kb_2^{-1}, b_2).$

• We will use generalized Hirota-differential [?]:

$$\left(D_x^{(\epsilon_1,\epsilon_2)}\right)^m(f\cdot g)=\left.\left(\frac{d}{dy}\right)^mf(x+\epsilon_1y)g(x+\epsilon_2y)\right|_{y=0}$$

• Therefore:

$$\widehat{\mathbb{F}}_m(P,b;q) = \sum_{k \in \mathbb{Z}} \frac{q^{1/4 - \Delta(P,b)}}{l_k(P,b)} \left(D_{\log q}^{(b,b^{-1})} \right)^m \left(q^{\Delta_k^1} \mathbb{F}\left(P + kb_1, b_1; \beta_1 q \right) \cdot q^{\Delta_k^2} \mathbb{F}\left(P_2 \right) \right)$$

where we used that $\Delta_k^1 + \Delta_k^2 = \Delta(P, b) - 1/4 + k^2$.

• It is easy to see that:

$$H\left(\mathsf{v}_{\sqrt{1/2}}\otimes\mathsf{W}_{\mathsf{P},b}\right) = \frac{b+b^{-1}}{4}\left(\mathsf{v}_{\sqrt{1/2}}\otimes\mathsf{W}_{\mathsf{P},b}\right) + \frac{-2\epsilon q^{1/2}}{b+b^{-1}}\left(\mathsf{v}_{3/\sqrt{2}}\otimes\mathsf{W}_{\mathsf{P},b}\right)$$

But the vectors $v_{3/\sqrt{2}}$ and $v_{1/\sqrt{2}}$ are orthogonal, hence we have:

$$\widehat{\mathbb{F}}_{1}(P,b;q) = \left\langle v_{\sqrt{1/2}} \otimes W_{P,b}, H\left(v_{\sqrt{1/2}} \otimes W_{P,b}\right) \right\rangle = \frac{b+b^{-1}}{4} \widehat{\mathbb{F}}_{0}(P,b;q)$$
(8)

$$\widehat{\mathbb{F}}_m(P,b;q) = \left\langle v_{\sqrt{1/2}} \otimes \mathsf{W}_{\mathrm{P},b}, H^m\left(v_{\sqrt{1/2}} \otimes \mathsf{W}_{\mathrm{P},b}\right) \right\rangle = \frac{b+b^{-1}}{4} \widehat{\mathbb{F}}_0(P,b;q)$$

Similarly applying H one can prove that:

$$\widehat{\mathbb{F}}_1(P,b;q) = \frac{b+b^{-1}}{4} \widehat{\mathbb{F}}_0(P,b;q)$$
(9)

$$\widehat{\mathbb{F}}_{2}(P,b;q) = \left(\frac{b+b^{-1}}{4}\right)^{2} \widehat{\mathbb{F}}_{0}(P,b;q),$$
(10)

$$\widehat{\mathbb{F}}_{3}(P,b;q) = \left(\frac{b+b^{-1}}{4}\right)^{3} \widehat{\mathbb{F}}_{0}(P,b;q)$$
(11)

$$\widehat{\mathbb{F}}_4(P,b;q) = \left(rac{b+b^{-1}}{4}
ight)^4 \widehat{\mathbb{F}}_0(P,b;q) - 2q\widehat{\mathbb{F}}_0(P,b;q)$$

$$\begin{split} \widehat{\mathbb{F}}_{5}(P,b;q) &= \left(\frac{b+b^{-1}}{4}\right)^{5} \widehat{\mathbb{F}}_{0}(P,b;q) - \frac{17}{2}(b+b^{-1})q\widehat{\mathbb{F}}_{0}(P,b;q) \\ \widehat{\mathbb{F}}_{6}(P,b;q) &= \left(\frac{b+b^{-1}}{4}\right)^{6} \widehat{\mathbb{F}}_{0}(P,b;q) - \frac{183(b+b^{-1})^{2}}{8}q\widehat{\mathbb{F}}_{0}(P,b;q) + \\ 8q^{3-\Delta(P,b)}\partial_{q}\left(q^{\Delta(P,b)}\widehat{\mathbb{F}}_{0}'(P,b;q)\right) \end{split}$$

26 June 2013 19 / 19

・ロト ・回ト ・ヨト ・ヨト