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We consider the evolutionary systems

ϕi
t = F i (ϕ,ϕx,ϕxx, . . . ) ≡ F i (ϕ,ϕx1 , . . . ,ϕxd , . . . ) (1)

i = 1, . . . , n , ϕ = (ϕ1, . . . , ϕn), with d spatial dimensions, and their
m-phase solutions which are usually written in the form

ϕi (x, t) = Φi
(

k1(U) x1 + . . . + kd(U) xd + ω(U) t + θ0, U
)

(2)

with some 2π-periodic in each θα functions

Φi (θ,U) ≡ Φi
(
θ1, . . . , θm, U

)
The functions kq(U) = (k1

q(U), . . . , kmq (U)) play here the role of the
“wave numbers” and ω(U) = (ω1(U), . . . , ωm(U)) represent the
“frequencies” of the m-phase solutions. The parameters θ0 represent the
“initial phase shifts”, which can take arbitrary values on the family of the
m-phase solutions.
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Here everywhere we will define a quasiperiodic function f (x) with the fixed
wave numbers (k1, . . . , kd) as a function f (x) on Rd coming from a
smooth periodic function f (θ) on the torus Tm:

f (k1x
1 + · · ·+ kdx

d + θ0) → f (x1, . . . , xd)

under the corresponding mapping Rd → Tm.
Let us call a smooth family of m-phase solutions of (1) any family (2) with
a smooth dependence of the functions Φ(θ,U) on some finite number of
parameters U = (U1, . . . ,UN).
The functions Φi (θ,U) are then defined by the system

ωαΦi
θα − F i

(
Φ, kβ1

1 Φθβ1 , . . . , k
βd
d Φθβd , . . .

)
= 0 (3)

(summation over repeated indexes).
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As it is well known, in the Whitham approach the parameters (U1, . . . ,UN)
become “slow” functions of coordinates and time. More precisely, we have
to make the coordinate change xq → X q = εxq, t → T = εt, ε→ 0 and
introduce the slow functions Sα(X,T ), α = 1, . . . ,m. We try to construct
then the asymptotic solutions of the system

ε ϕi
T = F i

(
ϕ, εϕX, ε

2ϕXX, . . .
)

(4)

with the main term having the form

ϕi
(0) = Φi

(
S(X,T )

ε
+ θ0(X,T ) + θ, U(X,T )

)
, i = 1, . . . , n1

(5)

A.Ya. Maltsev () The multi-dimensional Hamiltonian Structures in the Whitham methodLandau Days 2013 4 / 27



Substituting the functions from Λ it is easy to get the relations

SαT = ωα(U) , SαX q = kαq (U)

in the zero approximation, which gives the compatibility conditions

kαq T = ωαX q , kαq X p = kαp X q (6)

for the parameters (k1, . . . , kd , ω) on the family Λ.
The second part of restrictions on the parameters (U1, . . . ,UN) in the
Whitham method is given by the requirement of the existence of the first
correction ϕ(1) to solution (5)

ϕi ' ϕi
(0) + ε ϕi

(1)

(
S(X,T )

ε
+ θ0(X,T ) + θ, X, T

)
on the space of 2π-periodic in θ functions.
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The functions ϕ(1)(θ,X,T ) are defined by the linear system

L̂[U(X,T ),θ0(X,T )]ϕ(1)(θ,X,T ) = f1(θ,X,T )

where L̂[U(X,T ),θ0(X,T )] is the linear operator given by the linearization of
the left-hand part of system (3) on the corresponding functions from Λ
and f1(θ,X,T ) is the first ε-discrepancy defined after the substitution of
(5) in (4).
The operator L̂[U(X,T ),θ0(X,T )] represents a differential in θ operator with
periodic coefficients at every fixed X and T . We get then that the second
part of the Whitham system should be given by the orthogonality of the
function f1(θ,X,T ) to all the left eigen-vectors of L̂ (the eigen-vectors of
the adjoint operator) corresponding to the zero eigen-values at every fixed
(X,T ).
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We should say, however, that the orthogonality of f1(θ,X,T ) to all the
left eigen-vectors of L̂ with zero eigen-values is imposed usually just in the
one-phase situation. In this case we have usually just a finite number of
such eigen-vectors depending regularly on the parameters (U1, . . . ,UN).
The corresponding orthogonality conditions together with conditions (6)
give then a regular system of hydrodynamic type which represents the
Whitham system in the one-phase situation. Another important thing
taking place in the one-phase situation is the possibility of constructing of
all the corrections ϕ(n) in all orders of ε and representing the asymptotic
solution as a regular series in integer powers of ε.
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This situation, however, does not usually takes place in the multi-phase
case where the behavior of the eigen-vectors of L̂ is usually much more
complicated. Thus, the kernels of the operators L̂ and L̂† depend usually in
highly nontrivial way on the parameters U, being finite- or
infinite-dimensional for different values of (U1, . . . ,UN). In this situation
it is natural to define the “regular” orthogonality conditions just by the
requirement of orthogonality of f1 to the “regular” set of the kernel
vectors of L̂† which is usually finite also in the multi-phase case. Thus, we
assume here that the kernels of the operators L̂ and L̂† contain just a finite
number of linearly independent “regular” eigen-vectors, i.e. the
eigen-vectors smoothly depending on the parameters U. The “regular”
Whitham system is defined in this situation by conditions (6) and the
orthogonality of the discrepancy f1(θ,X,T ) to all the regular left
eigen-vectors of L̂ corresponding to the zero eigen-value.
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Let us say that the first correction ϕ(1) to the asymptotic solution (5) can
not be found here in such a simple form as in the one-phase situation.
However, as the investigations of this situation show, the corrections to
the main approximation ϕ(0) still vanish as ε→ 0 even in the multi-phase
case. So, despite the high non-triviality of the next approximation in this
case, the regular Whitham system still plays very important role in
consideration of slow-modulated m-phase solutions.
It is not difficult to see that the Whitham system imposes restrictions just
on the functions U(X,T ) and does not contain the parameters θ0(X,T ).
Indeed, the functions θ0(X,T ) can be considered just as ε-corrections to
the functions S(X,T ), so the constraints arising on the first step include
just the main terms S(X,T ), while the restrictions on θ0(X,T ) arise in
the higher approximations (if they exist).
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For the correct construction of the modulated solutions and a good
definition of the Whitham system we have to require in fact one more
thing from the family Λ. Namely, the correct procedure of constructing of
modulated solutions can be implemented on the “complete regular
families” Λ of m-phase solutions of (1). Let us give here the corresponding
definition. Let us consider the set of parameters U in the form

U = (k1, . . . , kd , ω, n
1, . . . , ns)

It is easy to see then that the vectors

ξ(α)[U,θ0] = Φθα(θ + θ0, U) , α = 1, . . . ,m ,

η(l)[U,θ0] = Φnl (θ + θ0, U) , l = 1, . . . , s ,

represent regular (right) eigen-vectors of the operators L̂[U,θ0]

corresponding to the zero eigen-value.
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Definition 1.1.
We call a family Λ a complete regular family of m-phase solutions of (1):
1) The values kp = (k1

p , . . . , k
m
p ), ω = (ω1, . . . , ωm), represent

independent parameters on the family Λ, such that the total set of
parameters of the m-phase solutions can be represented in the form

(U, θ0) =
(
k1, . . . , kd , ω, n

1, . . . , ns , θ0

)
2) The vectors ξ(α)[U,θ0] and η(l)[U,θ0] are linearly independent and give

the maximal linearly independent set among the kernel vectors of L̂[U,θ0]

smoothly depending on all the parameters U on the whole set of
parameters;
3) The operator L̂[U,θ0] has exactly m + s linearly independent left
eigen-vectors with the zero eigen-value

κ
(q)
[U](θ + θ0) = κ

(q)
[k1,...,kd ,ω, n](θ + θ0) , q = 1, . . . ,m + s

among the vectors smoothly depending on the parameters U on the whole
set of parameters.
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By definition we will call the regular Whitham system for a complete
regular family of m-phase solutions of (1) the conditions of orthogonality

of the discrepancy f(1)(θ,X,T ) to the functions κ
(q)
[U(X,T )](θ + θ0(X,T ))∫ 2π

0
. . .

∫ 2π

0
κ

(q)
[U(X,T )] i (θ + θ0(X,T )) f i(1)(θ,X,T )

dmθ

(2π)m
= 0 (7)

(q = 1, . . . , m + s) with the compatibility conditions

kαp T = ωαX p (8)

kαp X l = kαl X p (9)

α = 1, . . . ,m, p, l , k = 1, . . . , d ,
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For our further purposes it will be convenient to separate the evolutionary
part of the Whitham system and purely spatial constraints. So, let us call
here relations (7) - (8) the evolutionary part of a regular Whitham system
for a complete regular family Λ, while relations (9) will be considered as
additional constraints for the evolutionary system (7) - (8). It is easy to
see that the constraints (9) are conserved by the evolutionary system (7) -
(8) being imposed at the initial time.
The evolutionary part of a regular Whitham system provides exactly
m(d + 1) + s independent relations for N = m(d + 1) + s parameters
U = (k1, . . . , kd , ω, n) at every X and T . In generic case the derivatives
UT can be expressed in terms of UX l from system (7) - (8) and the
evolutionary part of a regular Whitham system can be written in the form

Uν
T = V νl

µ (U) Uµ
X l (10)

(ν, µ = 1, . . . ,N, l = 1, . . . , d).

A.Ya. Maltsev () The multi-dimensional Hamiltonian Structures in the Whitham methodLandau Days 2013 13 / 27



The Hamiltonian theory of systems (10) was started by B.A. Dubrovin and
S.P. Novikov who introduced the concept of the Poisson bracket of
Hydrodynamic Type. The local Poisson brackets of Hydrodynamic Type
(Dubrovin - Novikov brackets) can be represented by the following general
form

{Uν(X),Uµ(Y)} = gνµ l (U(X)) δX l (X−Y) + bνµ l
λ (U(X)) Uλ

X l δ(X−Y)
(11)

(summation over repeated indexes).
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The theory of brackets (11) is best developed in the case of one spatial
(d = 1) dimension. Thus, expression (11) with non-degenerate tensor gνµ

defines a Poisson bracket for d = 1 if and only if the tensor gνµ(U)
represents a flat pseudo-Riemannian (contravariant) metric on the space of
parameters U, while the functions Γνµγ(U) = − gµλ(U) bλνγ (U)

(gνλ(U) gλµ(U) ≡ δνµ) represent the corresponding Christoffel symbols.
As a corollary, every Dubrovin - Novikov bracket in one-dimensional case
can be written in the canonical (constant) form

{cν(X ), cµ(Y )} = eν δνµ δ′(X − Y ) , eν = ±1

after the transition to the flat coordinates cν = cν(U) for the metric
gνµ(U).
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The functionals

C ν =

∫ +∞

−∞
cν(X ) dX , P =

∫ +∞

−∞

1

2

N∑
ν=1

eν (cν)2(X ) dX

represent the annihilators and the momentum functional of the bracket
(11) for d = 1 respectively. The systems of Hydrodynamic Type are
generated by the functionals of Hydrodynamic Type

H =

∫ +∞

−∞
h(U) dX

according to the Dubrovin - Novikov bracket.
Let us say, that the theory of the Dubrovin - Novikov brackets in the
multi-dimensional case is more complicated than in the case d = 1.
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The Hamiltonian approach plays very important role in the theory of
integrability of the Hydrodynamic Type systems in the case of one spatial
dimension. Thus, according to conjecture of S.P. Novikov, all the systems
of Hydrodynamic Type which can be written in the diagonal form

Uν
T = V ν (U) Uν

X

and are Hamiltonian with respect to some local bracket of Hydrodynamic
Type are integrable. The Novikov conjecture was proved by S.P. Tsarev
who suggested a method of integration of these systems. In fact, the
method of Tsarev is applicable to a wider class of diagonalizable systems
of hydrodynamic type which was called by Tsarev “semi-Hamiltonian”. As
it turned out later, the class of “semi-Hamiltonian systems” contains also
the systems Hamiltonian with respect to generalizations of the Dubrovin -
Novikov bracket - the weakly nonlocal Mokhov - Ferapontov bracket and
the Ferapontov brackets.
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The Hamiltonian formulation of the Whitham method was also suggested
by B.A. Dubrovin and S.P. Novikov who introduced the procedure of the
“averaging” of Hamiltonian structures in the theory of slow modulations.
This approach is connected with the Whitham method for the evolutionary
systems

ϕi
t = F i (ϕ,ϕx , . . . )

having a local field-theoretic Poisson structure

{ϕi (x), ϕj(y)} =
∑
k≥0

B ij
(k)(ϕ,ϕx , . . . ) δ

(k)(x − y)

with the local Hamiltonian of the form

H =

∫
PH(ϕ,ϕx , . . . ) dx
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The procedure of the averaging of local field-theoretic Poisson brackets
was first developed in the case of one spatial dimension and gives a local
Poisson structure of Hydrodynamic Type for the corresponding Whitham
system. The method of B.A. Dubrovin and S.P. Novikov is connected with
the conservative form of the Whitham system and is based on the
existence of N (equal to the number of parameters Uν of the family Λ)
local integrals

I ν =

∫
Pν(ϕ,ϕx , . . . ) dx

which commute with the Hamiltonian H and with each other

{I ν ,H} = 0 , {I ν , Iµ} = 0

We have then
Pνt (ϕ,ϕx , . . . ) ≡ Qν

x (ϕ,ϕx , . . . )

for some functions Qν(ϕ,ϕx , . . . ), while the calculation of the pairwise
Poisson brackets of the densities Pν gives

{Pν(x),Pµ(y)} =
∑
k≥0

Aνµk (ϕ,ϕx , . . . ) δ
(k)(x − y)

where
Aνµ0 (ϕ,ϕx , . . . ) ≡ ∂xQ

νµ(ϕ,ϕx , . . . )

A.Ya. Maltsev () The multi-dimensional Hamiltonian Structures in the Whitham methodLandau Days 2013 19 / 27



The Dubrovin - Novikov bracket on the space of functions U(X), where
Uν ≡ 〈Pν〉, is defined by the formula

{Uν(X ) , Uµ(Y )} = 〈Aνµ1 〉(U) δ′(X−Y ) +
∂〈Qνµ〉
∂Uγ

Uγ
X δ(X−Y ) (12)

The Whitham system is written now in the form

〈Pν〉T = 〈Qν〉X , ν = 1, . . . ,N

and can be proved to be Hamiltonian with respect to the Dubrovin -
Novikov bracket (12) with the Hamiltonian

Hav =

∫ +∞

−∞
〈PH〉 (U(X )) dX
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The procedure of averaging of multi-dimensional local field-theoretic
Poisson brackets should be actually modified with respect to the
one-dimensional case.
We assume now that system (1) is Hamiltonian with respect to a local
field-theoretic Poisson bracket

{ϕi (x) , ϕi (y)} =
∑

l1,...,ld

B ij
(l1,...,ld )(ϕ,ϕx, . . . ) δ

(l1)(x1−y1) . . . δ(ld )(xd−yd)

(13)
(l1, . . . , ld ≥ 0), with a local Hamiltonian of the form

H =

∫
PH (ϕ,ϕx,ϕxx, . . . ) ddx (14)
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Like in the Dubrovin - Novikov procedure we have to require here the
existence of N (equal to the number of parameters (k1, . . . , kd , ω, n))
first integrals

I ν =

∫
Pν (ϕ, ϕx, ϕxx, . . . ) ddx (15)

such that their values can be chosen as the parameters (U1, . . . ,UN) on
the family Λ. We assume also that all the integrals I ν commute with each
other and with the Hamiltonian H

{I ν , Iµ} = 0 , {I ν , H} = 0 (16)

according to bracket (13). For the time evolution of the densities Pν(x)
we can write

Pνt (ϕ,ϕx,ϕxx, . . . ) = Qν1
x1 (ϕ,ϕx,ϕxx, . . . ) + . . .+ Qνd

xd (ϕ,ϕx,ϕxx, . . . )

with some functions Qνl .
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In fact, we have to put also some additional requirements on the family Λ
and the set of the integrals I ν . Namely, we have to require that the family
Λ represents a regular Hamiltonian family of m-phase solutions of system
(1) and the set (I 1, . . . , IN) represents a complete Hamiltonian set of
commuting integrals. So, the family Λ should in fact satisfy the following
requirements:
1) The family Λ represents a complete regular family of m-phase solutions
of (1) in the sense of Definition 1.1;
2) The corresponding bracket (13) has on Λ constant number of
annihilators N1, . . . , Ns with linearly independent variation derivatives
δN l/δϕi (x).
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In the similar way, we have to put also the following requirements on the
set (I 1, . . . , IN):
1) The restriction of the functionals (I 1, . . . , IN) on the quasiperiodic
solutions of the family Λ gives a complete set of parameters (U1, . . . ,UN)
on this family;
2) The Hamiltonian flows generated by (I 1, . . . , IN) generate on Λ linear
phase shifts of θ0 with frequencies ων(U), such that

rk ||ωαν(U)|| = m

3) The linear space generated by the variation derivatives δI ν/δϕi (x) on Λ
contains the variation derivatives of all the annihilators Nq of the bracket
(13), such that

δN l

δϕi (x)

∣∣∣∣
Λ

=
N∑
ν=1

γ lν(U)
δI ν

δϕi (x)

∣∣∣∣
Λ

for some smooth functions γ lν(U) on the family Λ.
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Under the requirements formulated above the set (I 1, . . . , IN) can be used
for construction of a local field-theoretic Poisson bracket for the regular
Whitham system on a regular Hamiltonian family Λ of m-phase solutions
of system (1). The corresponding procedure in the absence of the
pseudo-phases can be formulated in the following way:
Let us represent the pairwise Poisson brackets of the densities Pν(x),
Pµ(y) in the form

{Pν(x) , Pµ(y)} =
∑

l1,...,ld

Aνµl1...ld (ϕ,ϕx, . . . ) δ
(l1)(x1−y1) . . . δ(ld )(xd−yd)

(l1, . . . , ld ≥ 0). According to relations (16) we can also write here the
relations

Aνµ0...0(ϕ,ϕx, . . . ) ≡ ∂x1 Qνµ1(ϕ,ϕx, . . . ) + . . . + ∂xd Q
νµd(ϕ,ϕx, . . . )

for some functions (Qνµ1, . . . ,Qνµd).
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Let us say, however, that the averaged Poisson bracket does not have in
general the form (11) for d > 1, which is connected with the fact that the
Hamiltonian structure should be defined now just on the “submanifold” in
the space of functions U(X), given by the constraints kαq X p = kαp X q ,
α = 1, . . . ,m, q, p = 1, . . . , d . To define the corresponding Poisson
bracket we have to introduce the coordinates Sα(X) (α = 1, . . . ,m) on
this submanifold, defined by the relations SαX q = kαq (X). It is easy to see,
that the spatial derivatives of the functions Sα(X) provide just md
coordinates on the family Λ, connected with the wave numbers of the
solutions. For the rest m + s coordinates we can use just arbitrary
independent values Uγ , γ = 1, . . . ,m + s from the full set Uν = 〈Pν〉,
ν = 1, . . . ,N on Λ. The corresponding regular Whitham system on Λ can
then be written in the absence of pseudo-phases in the form:

SαT = ωα
(
SX, U

1, . . . ,Um+s
)

, α = 1, . . . ,m ,

Uγ
T = 〈Qγ1〉X 1 + . . . + 〈Qγd〉X d , γ = 1, . . . ,m + s ,

(17)

where 〈Qγp〉 = 〈Qγp〉(SX, U
1, . . . ,Um+s).
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It can be shown then that the Hamiltonian structure of system (17) is
given by the Poisson bracket{

Sα(X) , Sβ(Y)
}

= 0 ,

{Sα(X) , Uγ(Y)} = ωαγ
(
SX,U

1(X), . . . ,Um+s(X)
)
δ(X− Y) , (18)

{Uγ(X) , Uρ(Y)} = 〈Aγρ10...0〉
(
SX, U

1(X), . . . ,Um+s(X)
)
δX 1(X−Y) +

+ . . . + 〈Aγρ0...01〉
(
SX, U

1(X), . . . ,Um+s(X)
)
δX d (X− Y) +

+
[
〈Qγρ p〉

(
SX, U

1(X), . . . ,Um+s(X)
)]

X p δ(X−Y) , γ, ρ = 1, . . . ,m+s ,

with the Hamiltonian functional

Hav =

∫
〈PH〉

(
SX, U

1(X), . . . ,Um+s(X)
)
ddX
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