Light Propagation in Active Metamaterials with Mixed Positive and Negative Refractive Index

A.O. Korotkevich

In collaboration with: Ildar Gabitov, Gregor Kovačič, Kat Rasmussen, Andrei Maimistov, Victor Roytburd

Department of Mathematics and Statistics, University of New Mexico, USA, L. D. Landau Institute for Theoretical Physics, Russia.

26th of June, 2013 Landau Days – 2013, Chernogolovka, Russia

• □ ▶ • □ ▶ • □ ▶ •

Lambda-configuration Metamaterial Test for Negative Refraction

Basics of a Maxwell-Bloch Equations in Λ-configuration.

Lambda-configuration Metamaterial Test for Negative Refraction

< □ > < 同 > < 回 > < 回 >

Fishnet structure. Sensitive to polarization.

Lambda-configuration Metamaterial Test for Negative Refraction

э

э

Test for negative refraction.

Maxwell-Bloch Equations Conserved quantities

・ ロ ト ・ 雪 ト ・ 目 ト

æ

Maxwell-Bloch Equations.

$$\begin{aligned} \frac{\partial E_{\pm}}{\partial x} \pm \frac{1}{v_g} \frac{\partial E_{\pm}}{\partial t} &= \int_{-\infty}^{\infty} \rho_{\pm} g(\lambda) \, d\lambda \\ \frac{\partial \rho_+}{\partial t} - 2i\lambda \rho_+ &= \frac{1}{2} \left[E_+ (\mathcal{N} - n_+) - E_- \mu^* \right] \\ \frac{\partial \rho_-}{\partial t} - 2i\lambda \rho_- &= \frac{1}{2} \left[E_- (\mathcal{N} - n_-) - E_+ \mu \right] \\ \frac{\partial \mu}{\partial t} &= \frac{1}{2} \left[E_+^* \rho_- + E_- \rho_+^* \right] \qquad \frac{\partial n_{\pm}}{\partial t} &= \frac{1}{2} \left[E_{\pm} \rho_{\pm}^* + E_{\pm}^* \rho_{\pm} \right] \\ \frac{\partial \mathcal{N}}{\partial t} &= -\frac{1}{2} \left[E_+ \rho_+^* + E_+^* \rho_+ + E_- \rho_-^* + E_-^* \rho_- \right] \\ g(\lambda) &= \frac{\varepsilon}{\pi (\varepsilon^2 + \lambda^2)} \qquad n_+ + n_- + \mathcal{N} = 1 \end{aligned}$$

Maxwell-Bloch Equations Conserved quantities

< ロ > < 同 > < 回 > < 回 > .

э

Conserved quantities (traces of $\hat{\rho}$, $\hat{\rho}^2$, and $\hat{\rho}^3$).

$$\begin{split} I_1 &= n_+ + n_- + \mathcal{N} \quad \text{(conservation of particles)} \\ I_2 &= n_+^2 + n_-^2 + \mathcal{N}^2 + 2(\rho_+^2 + \rho_-^2 + \mu^2) \quad \text{(unitarity)} \\ I_3 &= n_+^3 + n_-^3 + \mathcal{N}^3 + \\ 3[\mathcal{N}(\rho_+^2 + \rho_-^2) + n_+(\rho_+^2 + \mu^2) + n_-(\rho_-^2 + \mu^2) + \rho_+ \rho_-^* \mu + \rho_+^* \rho_- \mu^*] \end{split}$$

Implicit Scheme Initial Conditions Results of Simulation

Numerical Scheme.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Implicit Scheme Initial Conditions Results of Simulation

Number of particles.

Implicit Scheme Initial Conditions Results of Simulation

Unitarity.

Implicit Scheme Initial Conditions Results of Simulation

Third integral of motion.

Implicit Scheme Initial Conditions Results of Simulation

< ロ > < 同 > < 回 > < 回 > .

Numerical Experiment.

• $\mu = 0.2, n_+ = 0.6, n_+ = 0.4, c = 1.$

- Gaussian pulse in $E_+(t)$ on the left boundary. Amplitude 2.0, width 1.0, delay 3.0.
- Supposed to get backfire in E_{-} on the left boundary.

Implicit Scheme Initial Conditions Results of Simulation

< ロ > < 同 > < 回 > < 回 > .

Numerical Experiment.

- $\mu = 0.2, n_+ = 0.6, n_+ = 0.4, c = 1.$
- Gaussian pulse in *E*₊(*t*) on the left boundary. Amplitude 2.0, width 1.0, delay 3.0.
- Supposed to get backfire in *E*₋ on the left boundary.

Implicit Scheme Initial Conditions Results of Simulation

< ロ > < 同 > < 回 > < 回 > .

Numerical Experiment.

- $\mu = 0.2, n_+ = 0.6, n_+ = 0.4, c = 1.$
- Gaussian pulse in *E*₊(*t*) on the left boundary. Amplitude 2.0, width 1.0, delay 3.0.
- Supposed to get backfire in *E*₋ on the left boundary.

Implicit Scheme Initial Conditions Results of Simulation.

|E₊(x,t)| surface

Implicit Scheme Initial Conditions Results of Simulation.

|E_(x,t)| surface

Implicit Scheme Initial Conditions Results of Simulation.

n₊(x,t) surface

Implicit Scheme Initial Conditions Results of Simulation.

N(x,t) surface

Implicit Scheme Initial Conditions Results of Simulation.

n_(x,t) surface

Implicit Scheme Initial Conditions Results of Simulation.

$|\rho_+(x,t)|$ surface

◆□▶ ◆□▶ ◆□▶ ◆□▶

э

Implicit Scheme Initial Conditions Results of Simulation.

$|\rho_{(x,t)}|$ surface

Implicit Scheme Initial Conditions Results of Simulation.

$|\mu(x,t)|$ surface

・ロット (雪) (日) (日)

æ

Summary

Conclusions

- The test for the negative refraction material is proposed.
- We created a code which simulates Maxwell-Bloch equations for Λ-configuration.
- We have found set of conditions when the proposed test works.
- Performed simulation of the backfiring pulse to confirm the proposed testing procedure.

< 回 > < 回 > < 回 >

Summary

Conclusions

- The test for the negative refraction material is proposed.
- We created a code which simulates Maxwell-Bloch equations for Λ-configuration.
- We have found set of conditions when the proposed test works.
- Performed simulation of the backfiring pulse to confirm the proposed testing procedure.

< 同 > < 回 > < 回 >

Summary

Conclusions

- The test for the negative refraction material is proposed.
- We created a code which simulates Maxwell-Bloch equations for Λ-configuration.
- We have found set of conditions when the proposed test works.
- Performed simulation of the backfiring pulse to confirm the proposed testing procedure.

< 同 > < 回 > < 回 >

Summary

Conclusions

- The test for the negative refraction material is proposed.
- We created a code which simulates Maxwell-Bloch equations for Λ-configuration.
- We have found set of conditions when the proposed test works.
- Performed simulation of the backfiring pulse to confirm the proposed testing procedure.

< 回 > < 回 > < 回 >