Correlation functions in Minimal Liouville Gravity from Douglas string equation

Baur Mukhametzhanov
(Joint work with A.Belavin, B. Dubrovin)

June 2013

- Our starting point is Conjecture: Partition function of Liouville Minimal gravity satisfies Douglas string equation and KdV equations.
- Natural parameters of Liouville gravity are connected to KdV times by special non-linear relation.
- We found these relations simultaneously with correlation functions, which obey the conformal selection rules.
- (q, p) Minimal Liouville Gravity consists of Liouville field $\phi(x)$ and CFT (q, p) Minimal Model.
- In (q,p) Minimal Liouville Gravity we are interested in evaluating the correlators of observables $O_{m n}$

$$
\left\langle O_{m_{1} n_{1}} \ldots O_{m_{k} n_{k}}\right\rangle
$$

where

$$
O_{m, n}=\int \mathcal{O}_{m, n}(x) d^{2} x, \quad \mathcal{O}_{m, n}(x)=\Phi_{m, n} e^{2 b \delta_{m, n} \phi(x)}
$$

and $\delta_{m, n}$ is the gravitational dimension

$$
\delta_{m, n}=\frac{p+q-|p m-q n|}{2 q}, \quad O_{m, n} \sim \mu^{\delta_{m, n}}
$$

- Instead of the correlators it is convenient to study their generating function

$$
\begin{aligned}
Z^{M G}(\lambda) & =\left\langle\exp \left(\sum_{m, n} \lambda_{m, n} O_{m, n}\right)\right\rangle= \\
& =Z_{0}+\sum \lambda_{m, n}\left\langle O_{m n}\right\rangle+\frac{1}{2} \sum \lambda_{m_{1}, n_{1}} \lambda_{m_{2}, n_{2}}\left\langle O_{m_{1} n_{1}} O_{m_{2} n_{2}}\right\rangle+\ldots
\end{aligned}
$$

- The generating function possesses a definite mass dimension

$$
Z^{M G} \sim \mu^{1+\frac{p}{q}}
$$

Minimal Models

- In minimal conformal field theory there are "selection rules"

$$
\begin{array}{ll}
\left\langle\Phi_{m, n}\right\rangle=0, & (m, n) \neq(1,1), \\
\left\langle\Phi_{m_{1} n_{1}} \Phi_{m_{2} n_{2}}\right\rangle=0, & \left(m_{1}, n_{1}\right) \neq\left(m_{2}, n_{2}\right), \\
\left\langle\Phi_{m_{1} n_{1}} \Phi_{m_{2} n_{2}} \Phi_{m_{3} n_{3}}\right\rangle=0, & \left\{\begin{array}{l}
m_{i_{1}}>\min \left(m_{i_{2}}+m_{i_{3}}, 2 p-m_{i_{2}}-m_{i_{3}}-4\right) \\
n_{i_{1}}>\min \left(n_{i_{2}}+n_{i_{3}}, 2 p-n_{i_{2}}-n_{i_{3}}-4\right)
\end{array}\right.
\end{array}
$$

for arbitrary permutation $\left(i_{1}, i_{2}, i_{3}\right)$ of numbers $(1,2,3)$.

Contact terms and resonance relations

- In local field theory the integrated correlation functions suffer from intrinsic ambiguity from the contact terms. The integral

$$
\int_{x_{1}, \ldots, x_{k}}\left\langle\mathcal{O}_{m_{1}, n_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{m_{k}, n_{k}}\left(x_{k}\right)\right\rangle
$$

may pick up contributions from delta like terms in the integrand, when two or more points x_{i} collide.

- One may add to the n-point correlation numbers some k-point correlation numbers. For instance

$$
\left\langle O_{m_{1}, n_{1}} O_{m_{2}, n_{2}}\right\rangle \rightarrow\left\langle O_{m_{1}, n_{1}} O_{m_{2}, n_{2}}\right\rangle+\sum_{m, n} A_{m, n}^{\left(m_{1} n_{1}\right)\left(m_{2} n_{2}\right)}\left\langle O_{m, n}\right\rangle .
$$

Or equivalently

$$
\lambda_{m, n} \rightarrow \lambda_{m, n}+\sum_{m_{1}, n_{1}, m_{2}, n_{2}} A_{m, n}^{\left(m_{1} n_{1}\right)\left(m_{2} n_{2}\right)} \lambda_{m_{1} n_{1}} \lambda_{m_{2} n_{2}} .
$$

- The form of these relations can be further restricted by scaling invariance. Namely since the fields $O_{m, n}$ and times $\lambda_{m, n}$ have definite gravitational dimensions

$$
O_{m, n} \sim \mu^{\delta_{m, n}}, \quad \lambda_{m, n} \sim \mu^{-\delta_{m, n}}
$$

then for instance $A_{m, n}^{\left(m_{1} n_{1}\right)\left(m_{2} n_{2}\right)} \neq 0$ only if $\delta_{m, n}=\delta_{m_{1}, n_{1}}+\delta_{m_{2}, n_{2}}$.

- CONJECTURE: There exists such a change of variables
$\left\{\lambda_{m, n}\right\} \rightarrow\left\{t_{k, \alpha}\right\} \equiv\left\{t_{m, n}\right\}, Z^{M G}(\lambda)=Z(t(\lambda))$ that $Z(\mathrm{t})$ satisfies the equation

$$
\frac{\partial^{2} Z}{\partial x \partial t_{0, \alpha}}=\left.\operatorname{Res} Q^{\frac{\alpha}{q}}\right|_{u^{\alpha}=u_{*}^{\alpha}}
$$

where u_{*}^{α} is the appropriate solution of the "String equation"

$$
\{P, Q\}=\frac{\partial P}{\partial x} \frac{\partial Q}{\partial y}-\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x}=1
$$

and
$x=t_{0,1}, \quad Q=y^{q}+\sum_{\alpha=1}^{q-1} u_{\alpha}(x) y^{q-\alpha-1}, \quad P=\left(Q^{\frac{p}{q}}+\sum_{\alpha=1}^{q-1} \sum_{k=1} t_{k, \alpha} Q^{k+\frac{\alpha}{q}}\right)_{+}$
$(\ldots)_{+}$denotes that non-negative powers of y are taken in the series expansion.

- Then the function $Z(t)$ has the same scaling properties as $Z^{M G}(\lambda)$

$$
Z \sim y^{2 q\left(1+\frac{p}{q}\right)}, \quad Z^{M G} \sim \mu^{1+\frac{p}{q}} \Rightarrow y \sim \mu^{\frac{1}{2 q}}
$$

- The times $t_{k, \alpha}$ are related to the times $t_{m, n}$. One must redefine the sum in H

$$
\sum_{k, \alpha} t_{k, \alpha} \operatorname{Res} Q^{k+\frac{\alpha}{q}}=\sum_{m, n} t_{m, n} Q^{\frac{|p m-q n|}{q}}
$$

- We establish the explicit form of the relation between $\lambda_{m, n}$ and $t_{m, n}$ (the resonance relations) by demanding that the correlation functions satisfy the fusion rules.
- From the definition of $Z(t)$ follows that it is the logarithm of the Sato tau-function. It is convenient to make use of the following representation for it

$$
Z=\int_{0}^{u_{*}} C_{\alpha}^{\beta \gamma} \frac{\partial H}{\partial u_{\beta}} \frac{\partial H}{\partial u_{\gamma}} d u^{\alpha}
$$

where u_{*}^{α} is an appropriate solution of the string equation and

$$
\begin{aligned}
H & =\operatorname{Res} Q^{\frac{p}{q}+1}+\sum_{m, n} t_{m, n} \operatorname{Res} Q^{\frac{|p m-q n|}{q}} \\
C_{\alpha \beta \gamma} & =\operatorname{Res} \frac{\Phi_{\alpha} \Phi_{\beta} \Phi_{\gamma}}{Q^{\prime}}, \quad g_{\alpha \beta}=\operatorname{Res} \frac{\Phi_{\alpha} \Phi_{\beta}}{Q^{\prime}}, \\
C_{\alpha}^{\beta \gamma} & =C_{\alpha \rho \delta} g^{\rho \beta} g^{\delta \gamma}
\end{aligned}
$$

where $\Phi_{\alpha}=y^{q-\alpha-1}, Q^{\prime}=\frac{d Q}{d y}$.

- This construction is deeply related to some associative commutative algebra WDVV algebra
- WDVV algebra is the algebra of polynomials $P[y] \bmod Q^{\prime}$.
- If we take the basis in DVV algebra $\Phi_{\alpha}=\frac{\partial Q}{\partial u^{\alpha}}$, then

$$
\Phi_{\alpha} \Phi_{\beta}=C_{\alpha \beta}^{\gamma} \Phi_{\gamma} \bmod Q^{\prime}
$$

- There is a natural scalar product on this algebra

$$
g_{\alpha \beta}=\left\langle\Phi_{\alpha} \Phi_{\beta}\right\rangle=\operatorname{res} \frac{\Phi_{\alpha} \Phi_{\beta}}{Q^{\prime}}
$$

- The constants, appearing in the integral, are related to the structure constants

$$
C_{\alpha}^{\beta \gamma}=C_{\alpha \rho}^{\beta} g^{\rho \gamma}
$$

- The integral does not depend on the path of integration, since the form

$$
\Omega=C_{\alpha}^{\beta \gamma} \frac{\partial H}{\partial u_{\beta}} \frac{\partial H}{\partial u_{\gamma}} d u^{\alpha}
$$

is closed. This is true because of two properties:
1). Associativity: $C_{\alpha \beta}^{\gamma} C_{\gamma \delta}^{\phi}=C_{\alpha \gamma}^{\phi} C_{\beta \delta}^{\gamma}$
2). Recursion relation: $\frac{\partial^{2} H_{n, \alpha}}{\partial v_{\beta} \partial v_{\gamma}}=C_{\beta \gamma}^{\delta} \frac{\partial H_{n-1, \alpha}}{\partial v_{\delta}}$, where $H_{n, \alpha}=\operatorname{res} Q^{n+\frac{\alpha}{q}}$

- In this case one has $Q=y^{2}+u$ and

$$
\begin{aligned}
P(u):=\frac{\partial H}{\partial u} & =u^{s+1}+t_{0} u^{s-1}+\sum_{k=1}^{s-1} t_{k} u^{s-k-1} \\
Z & =\frac{1}{2} \int_{0}^{u_{*}} P^{2}(u) d u
\end{aligned}
$$

where u_{*} is the appropriate zero of the polynomial $P(u)$.

- To get the generating function for the correlation numbers one inserts the resonance relations

$$
t_{k}=\lambda_{k}+A_{k} \mu^{\delta_{k}}+B_{k}^{k_{1}} \lambda_{k_{1}} \mu^{\delta_{k}-\delta_{k_{1}}}+C_{k}^{k_{1} k_{2}} \lambda_{k_{1}} \lambda_{k_{2}} \mu^{\delta_{k}-\delta_{k_{1}}-\delta_{k_{2}}}+\ldots
$$

into the partition function and polynomial $P(u)$. The result is of the form

$$
\begin{aligned}
& Z=Z_{0}+\sum_{k=1}^{s-1} \lambda_{k} Z_{k}+\frac{1}{2} \sum_{k_{1}, k_{2}=1}^{s-1} \lambda_{k_{1}} \lambda_{k_{2}} Z_{k_{1} k_{2}}+\ldots \\
& P=P_{0}+\sum_{k=1}^{s-1} \lambda_{k} P_{k}+\frac{1}{2} \sum_{k_{1}, k_{2}=1}^{s-1} \lambda_{k_{1}} \lambda_{k_{2}} P_{k_{1} k_{2}}+\ldots
\end{aligned}
$$

- Also from the original form of the polynomial $P(u)$ one finds that

$$
\begin{aligned}
P_{0}(u) & =u^{s+1}+A \mu u^{s-1}+B \mu^{2} u^{s-3}+\ldots \\
P_{k}(u) & =u^{s-k-1}+C \mu u^{s-k-3}+D \mu^{2} u^{s-k-5}+\ldots \\
P_{k_{1} k_{2}} & =u^{s-k_{1}-k_{2}-3}+E \mu u^{s-k_{1}-k_{2}-5}+F \mu^{2} u^{s-k_{1}-k_{2}-k_{3}-7}+\ldots
\end{aligned}
$$

- The dimensions are

$$
\lambda_{k} \sim \mu^{\frac{k+2}{2}}, \quad Z \sim \mu^{\frac{2 s+3}{2}}, \quad Z_{k_{1} \ldots k_{n}} \sim \mu^{\frac{2 s+3-\sum\left(k_{i}+2\right)}{2}}
$$

- As usually in the spirit of the scaling theory, we are interested only in the singular part of partition function and disregard the regular part as non-universal.
- After an appropriate renormaliztion, which we do not present, we switch to dimensionless quantities.
- One finds one- and two-point correlation numbers

$$
\begin{aligned}
\mathcal{Z}_{k} & =\int_{0}^{1} d u P_{0}(u) P_{k}(u) \\
\mathcal{Z}_{k_{1} k_{2}} & =\int_{0}^{1} d u\left(P_{k_{1}}(u) P_{k_{2}}(u)+P_{0}(u) P_{k_{1} k_{2}}(u)\right)
\end{aligned}
$$

- The second term in the two point numbers is actually absent since the polynomial $P_{k_{1} k_{2}}$ could be written as linear combination of P_{k}.
- Also it is convenient here to introduce a new variable y instead of u

$$
\frac{y+1}{2}=u^{2}, \quad d u=\frac{d y}{2 \sqrt{2}(1+y)^{\frac{1}{2}}}
$$

In terms of the variable y the polynomials P_{0}, P_{k}, \ldots will contain all powers instead of going with step 2. And the shift was made in order for the interval of integration be $[-1,1]$ instead of $[0,1]$.

- Fusion rules determine the polynomials Q :

s-even	$P_{0}(y)=P_{\frac{s+1}{2}}^{\left(0,-\frac{1}{2}\right)}(y)-P_{\frac{s-1}{2}}^{\left(0,-\frac{1}{2}\right)}(y)$
s-odd	$P_{0}(y)=u\left(P_{\frac{s}{2}}^{\left(0, \frac{1}{2}\right)}(y)-P_{\frac{s-2}{2}}^{\left(0, \frac{1}{2}\right)}(y)\right)$
$(s+k)$-even	$P_{k}(y)=P_{\frac{s-k-1}{2}}^{\left(0,-\frac{1}{2}\right)}(y)$
$(s+\mathrm{k})$-odd	$P_{k}(y)=u P_{\substack{s-k-2}}^{\left(0, \frac{1}{2}\right)}(y)$

where $P_{n}^{(a, b)}$ is Jacobi polynomial.

- Due to the relation between Jacobi polynomials ans Legendre polynomials P_{n}

$$
\begin{aligned}
& P_{n}^{\left(0,-\frac{1}{2}\right)}\left(2 x^{2}-1\right)=P_{2 n}(x) \\
& x P_{n}^{\left(0, \frac{1}{2}\right)}\left(2 x^{2}-1\right)=P_{2 n+1}(x)
\end{aligned}
$$

it is in agreement with the paper A.Belavin, A. Zamolodchikov (2008).

- In this case the polynomial Q and the action are

$$
\begin{aligned}
Q & =y^{3}+u y+v, \quad H_{k . \alpha}:=\operatorname{res} Q^{k+\frac{\alpha}{q}} \\
H(u, v) & =H_{s+1, \alpha}+\sum_{k=0}^{s-1} t_{k} H_{s-k-1, \alpha}+\sum_{k=s}^{3 s+\alpha-2} t_{k} H_{k-s, 3-\alpha}
\end{aligned}
$$

- One takes then an appropriate solution $\left(u_{*}, v_{*}\right)$ of the equations

$$
\left\{\begin{array}{l}
H_{u}=0 \\
H_{v}=0
\end{array}\right.
$$

where the lowered indices u, v denote the derivatives over u and v.

- The free energy for this model is defined as

$$
Z=\frac{1}{2} \int\left(H_{u}^{2}-\frac{u}{3} H_{v}^{2}\right) d u+\int H_{u} H_{v} d v
$$

where the integration contour goes from $(u, v)=(0,0)$ to $(u, v)=\left(u_{*}, v_{*}\right)$.

- A new feature in this case is that for $(3 s+\alpha, 3)$ MG polynomials depend on two variables u, v instead of one variable u in the case $(2 s+1,2)$ MG.
- However it turns out to be possible to find the solution of the string equations such that

$$
u_{*}(\lambda=0)=u_{0}, \quad v_{*}(\lambda=0)=0
$$

and it ensures that one point correlation functions turn to zero.

- This allows to reduce the problem to determination of polynomials depending on one variable.
- Namely we will show that one the functions either $H_{u}(\lambda=0)$ or $H_{v}(\lambda=0)$ is always odd in v and thus turns to zero at $v=0$.
- Substitute the resonance relations into the action. We get some expression which could be written as expansion over λ_{k}

$$
H(u, v)=H^{0}(u, v)+\sum_{k=1}^{3 s+\alpha-2} \lambda_{k} H^{k}(u, v)+\frac{1}{2} \sum_{k_{1}, k_{2}=1}^{3 s+\alpha-2} \lambda_{k_{1}} \lambda_{k_{2}} H^{k_{1} k_{2}}(u, v)+\ldots
$$

and dimensional analysis gives

$$
H^{0}=\sum_{n, m} u^{n} v^{m} \sim \mu^{\frac{s+1}{2}+\frac{\alpha+1}{6}}
$$

And since $u \sim \mu^{\frac{1}{3}}, v \sim \mu^{\frac{1}{2}}$, the parity with respect to v is

$$
H^{0}(u,-v)=(-1)^{s+\alpha} H^{0}(u, v)
$$

- Thus, depending on the values of s and α, either $\frac{\partial H^{0}}{\partial u}$ or $\frac{\partial H^{0}}{\partial v}$ is odd function of v. Consequently, $v=0$ is always a solution of string equations at $\lambda=0$.
- Similarly a bunch of functions among $H^{k}, H^{k_{1} k_{2}}, \ldots$ are odd in v and thus turn to zero at $v=0$. This ensures that only polynomials of one variable u need to be defined by fusion rules.
- The following arguments are similar to those in $(2 s+1,2)$ case.
- For instance from the fusion rules for one- and two-point correlators

$(s+\alpha)-$ even	$H_{u}^{0}=x^{2(\alpha-1)}\left(P_{\frac{s-\alpha+2}{2}}^{\left(0, \frac{2}{3}(2 \alpha-3)\right)}(y)-P_{\frac{s-\alpha}{2}}^{\left(0, \frac{2}{3}(2 \alpha-3)\right)}(y)\right)$
$(s+\alpha)-$ odd	$H_{v}^{0}=x^{2 \alpha-1}\left(P_{\frac{s-\alpha+1}{2}}^{\left(0, \frac{1}{3}(4 \alpha-3)\right)}(y)-P_{\frac{s-\alpha-1}{2}}^{\left(0, \frac{1}{3}(4 \alpha-3)\right)}(y)\right)$
$(s+\alpha+k)-$ even, $k<s$	$H_{u}^{k}=x^{2(\alpha-1)} P_{\frac{s-k-\alpha}{2}}^{\left(0, \frac{2}{3}(2 \alpha-3)\right)}(y)$
$(s+\alpha+k)-$ even, $k \geq s$	$H_{v}^{k}=x^{2 \alpha-1} P_{\frac{s-k-\alpha-1}{2}}^{\left(0, \frac{1}{3}(4 \alpha-3)\right)}(y)$
$(s+\alpha+k)-$ odd, $k \geq s$	$H_{u}^{k}=x^{2(2-\alpha)} P_{\frac{k-s+\alpha-2}{2}}^{\left(0, \frac{2}{3}(3-2 \alpha)\right)}(y)$

where all the polynomials are presented at $v=0, P_{n}^{(a, b)}$ - are again Jacobi polynomials and

$$
x=\frac{u}{u_{0}}, \quad \frac{x+1}{2}=y^{3}
$$

- Let us concentrate on the special case when $s+\alpha$ - even and all k - even. In this case

$$
\begin{aligned}
Z_{k_{1} k_{2} k_{3}} & =-\left.\frac{H_{u}^{k_{1}} H_{u}^{k_{2}} H_{u}^{k_{3}}}{\left(H_{u}^{0}\right)^{\prime}}\right|_{u=1}+\int_{0}^{1} H_{u}^{0} H_{u}^{k_{1} k_{2} k_{3}} d u+ \\
& +\int_{0}^{1}\left(H_{u}^{k_{1}} H_{u}^{k_{2} k_{3}}+H_{u}^{k_{2}} H_{u}^{k_{1} k_{3}}+H_{u}^{k_{3}} H_{u}^{k_{1} k_{2}}\right) d u
\end{aligned}
$$

- $1 \leq k_{1}, k_{2}, k_{3} \leq s-1, k$ - even (Other cases are treated similarly.) (we assume that $k_{3}>k_{1}, k_{2}$)

$$
\mathcal{Z}_{k_{1} k_{2} k_{3}}=-\left.\frac{H_{u}^{k_{1}} H_{u}^{k_{2}} H_{u}^{k_{3}}}{\left(H_{u}^{0}\right)^{\prime}}\right|_{x=1}+\int_{0}^{1} H_{u}^{k_{3}} H_{u}^{k_{1} k_{2}} d x
$$

where prime denotes the derivative over x. Thus to satisfy fusion rules one needs the following to hold

$$
\int_{0}^{1} H_{u}^{k_{3}} H_{u}^{k_{1} k_{2}} d x=\left\{\begin{array}{lll}
0, & \text { if } k_{3} \leq k_{1}+k_{2} \\
\frac{1}{p}, & \text { if } \quad k_{3}>k_{1}+k_{2}
\end{array}\right.
$$

This determines $\left(P_{k}^{(a, b)}\right.$ - Jacobi polynomial)

$$
H_{u}^{k_{1} k_{2}}=\frac{1}{p} \sum_{k=0}^{\frac{s-k_{1}-k_{2}-\alpha-2}{2}}(6 k+4 \alpha-3) x^{2(\alpha-1)} P_{k}^{\left(0, \frac{2}{3}(2 \alpha-3)\right)}, \quad 1 \leq k_{1}, k_{2} \leq s-1
$$

- The quantity that doesn't depend on the normalization of the operators is

$$
\frac{\left(Z_{k_{1} k_{2} k_{3}}\right)^{2} Z_{0}}{\prod_{i=1}^{3} Z_{k_{i} k_{i}}}=\frac{\prod_{i=1}^{3}\left|p-k_{i} q\right|}{p(p+q)(p-q)}
$$

where $p=3 s+\alpha, q=3$.

- This perfectly agrees with direct calculations in Minimal Liouville gravity.
- Direct calculation then gives for even k_{i}

$$
Z_{k_{1} k_{2} k_{3} k_{4}}=Z_{k_{1} k_{2} k_{3} k_{4}}^{(0)}+Z_{k_{1} k_{2} k_{3} k_{4}}^{(I)}
$$

where the first term will reproduce the expression from Minimal gravity and the second ensure the fusion rules

$$
\begin{aligned}
Z_{k_{1} k_{2} k_{3} k_{4}}^{(0)}= & \left.\left(-\frac{H_{u}^{\prime \prime}}{\left(H_{u}^{\prime}\right)^{3}}+\frac{\sum_{i=1}^{4}\left(H_{u}^{k_{i}}\right)^{\prime}}{\left(H_{u}^{\prime}\right)^{2}}-\frac{\sum_{i<j} H_{u}^{k_{i} k_{j}}}{H_{u}^{\prime}}\right)\right|_{x=1}+ \\
& +\int_{0}^{1} d x\left(H_{u}^{k_{1} k_{2}} H_{u}^{k_{3} k_{4}}+H_{u}^{k_{1} k_{3}} H_{u}^{k_{2} k_{4}}+H_{u}^{k_{1} k_{4}} H_{u}^{k_{2} k_{3}}\right) \\
Z_{k_{1} k_{2} k_{3} k_{4}}^{(1)}= & \int_{0}^{1} d x\left(H_{u}^{k_{1} k_{2} k_{3}} H_{u}^{k_{4}}+H_{u}^{k_{1} k_{2} k_{4}} H_{u}^{k_{3}}+H_{u}^{k_{1} k_{3} k_{4}} H_{u}^{k_{2}}+H_{u}^{k_{2} k_{3} k_{4}} H_{u}^{k_{1}}+H_{u}^{0} H_{u}^{k_{1} k_{2} k_{3} k_{4}}\right)
\end{aligned}
$$

where prime means the derivative over x. We assume that $k_{1} \leq k_{2} \leq k_{3} \leq k_{4}$

- $1 \leq k_{1}, k_{2}, k_{3}, k_{4} \leq s-1$ (Other cases are treated similarly)

The fusion rules demand

$$
\int_{0}^{1} d x H_{u}^{k_{1} k_{2} k_{3}} H_{u}^{k_{4}}=\left\{\begin{array}{l}
0, \\
-k_{4} \leq k_{1}+k_{2}+k_{3} \\
-k_{1} k_{2} k_{3} k_{4}, \quad k_{4}>k_{1}+k_{2}+k_{3}
\end{array}\right.
$$

- The last determines

$$
H_{u}^{k_{1} k_{2} k_{3}}=\frac{1}{p^{2}} \sum_{k=0}^{\frac{s-k_{1}-k_{2}-k_{3}-\alpha-4}{2}} c_{k} x^{2(\alpha-1)} P_{k}^{\left(0, \frac{2}{3}(2 \alpha-3)\right)}(y)
$$

where

$$
c_{k}=\frac{3}{4}(6 k+4 \alpha-3)\left(2 k+\sum_{i=1}^{3} k_{i}-s+\alpha+2\right)\left(2 k-\sum_{i=1}^{3} k_{i}-2 s-2 \alpha-12\right)
$$

- A reasonable quantity to evaluate here is again

$$
\frac{\left(\mathcal{Z}_{k_{1} k_{2} k_{3} k_{4}} \mathcal{Z}_{0}\right)^{2}}{\prod_{i=1}^{4} \mathcal{Z}_{k_{i} k_{i}}}
$$

- Using properties of Jacobi polynomials one gets precisely the expression from minimal gravity.
- We argued that the partition function of Minimal Liouville Gravity indeed satisfies to the KdV and Douglas String equations.
- These equations together with the selection rules can be solved inspite of overdetermination of the constraints and obtained correlators agree with the results available in literature, computed by direct calculations.
- We obtain the resonance relations between KdV and Liouville observables in terms of Jacobi orthogonal polynomials.

