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Introduction
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Basic equations
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Friedel oscillations, zero harmonic 
Singularity at ∞→→Π= )2(,2 0 ee pkpk
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Friedel oscillations, non-zero harmonics
Singularity exists not for all values of   n.
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Nanotube in
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Double quantum well
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Screened potential in the wells 1 and 2
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Overscreening in the QW 2
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Friedel oscillations in DQW
Singularity stems from

1 2

1 2
11 2 2

1 2

1 2
11 2 21,2

1 2

2 , 2

sin(2 ) sin(2 )
(2 ) (2 )

sin( )
( )

q p p

p pU A B
p p

p pU U C
p p

ρ ρ
ρ ρ

ρ
ρ

=

∝ +

+
∝ ±

+

%

%

Combination frequency



Multilayer structure
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Multilayer structure
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Friedel oscillations
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Decay length in z – direction:  1(2 / )Fp −∆ ∆ ≠ period of oscillations 
in x,y – directions: 1(2 )Fp −



Screening by neutral particles: indirect 
dipolar excitons

Our question: 
How do neutral particles screen 
defects?



System under study: Excitonic Bose gas 
with repulsive interaction 
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Screening: Basic equations of the linear 
static response
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Screening: Results
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Screening is of dielectric type



Screening: Basic equations of the linear 
response with Bose-Einstein condensate

is found from the Gross-Pitaevskii equation:
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Results of calculations 
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Nonlinear screening: basic equations 
indtot WUW +=

For large distances (r>>d) we have a local relation: 
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In the case of degenerate exciton gas the total potential Wtot(r) obeys the nonlinear 
equation: 

)(4)(
0

2

rr ndeW ind δ
ε
π

≈⇒−= ∫ − r'r'r'rr dnWW exexind )()()( δ



Strong attraction 
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Strong attraction 
Total number of particles: 
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Nonlinear screening: results
Analytic solution of nonlinear equation can be found in limiting
cases:  Weak perturbation:
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In both cases screening becomes very strong with 
increasing exciton concentration  n.    



Modulation of exciton density in a hybrid structure 
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Friedel oscillations of excitons 
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Conclusion
Zero azimuth harmonic of the Coulomb potential in nanotubes is 
screened rather weakly 1/z(lnz)^2. 
All n-th (n≠0) harmonics are screened in accord with dielectric 
mechanism and the effective dielectric constant depends on n.
In DQW radius of screening depends on difference of the 
populations of the subbands because of contribution of the 
intersubband transitions (off-diagonal element); in the equilibrium 
case this radius becomes constant as soon as the second subband
starts to be populated.  
Friedel oscillations include contribution with combination period if 
both subbands of DQW are populated. 
In infinite periodic system of 2D layers screening of the Coulomb 
potential becomes three-dimensional (Yukawa law);  the role of the 
radius of screening plays a quantity independent of the electron
concentration. Anisotropy of the system manifests itself in the 
dependence of the preexponential factor on direction. 
Amplitude of the Friedel oscillations in the n-th plane of the 
superlattice exponentially decreases with increasing n .
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