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Introducing remarks

Kelvin-Helmholtz instability is one of the main instabilities in
hydrodynamics. This instability is known also as an instability
of tangential velocity discontinuity. It is aperiodic one. It also
takes place when tangential velocity discontinuity coincides
with the fluid interface. The growth rate Γ of this instability is
known since Kelvin and Helmholtz (from 19th century). In
absence of both gravity g and capillarity α, Γ ∼ k.
When g, α 6= 0, Γ has a threshold. For waves exited by wind,
the threshold velocity is defined by the minimal phase velocity
for the gravity-capillary waves (without wind) and is of the
order of 6 m/s. For this wind velocity, the mass appearance of
wave crests and forthcoming white caps is observed due to
the wave breaking process.
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Introducing remarks

In our paper (K. & Lushnikov, 1995) this phenomenon was
connected with wave collapse. At small excesses above the
threshold, a narrow wave packet is excited in the k-space and
resulting equation for envelope is the relativistic Klein-Gordon
equation with the negative square of the mass and the ”
irregular” nonlinearity which leads to collapse.
At g = α = 0 the nonlinear stage of this instability is also very
interesting. Within the integral Birkhoff-Rott (BR)equation,
Moore showed in 1979 that for one fluid the nonlinear stage
of the KH instability results in formation of singularities of the
root type in a finite time: the surface itself remains smooth,
but its curvature becomes singular. These singularities
become seeds for the vortex spirals centers.
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Introducing remarks

For a fluid interface the motion can be also described by the
BR equation together with one additional equation for the
vorticity evolution. Numerical solution of these equations
showed existence of the Moore-type singularities but
theoretical analysis by Baker, Caflisch, and Siegel (1993)
contained a number of approximations. The main assumption
was connected with ignoring of nonlinear interaction between
analytic continuations of solution into the upper and lower
half-planes of the corresponding complex variable. This cross
term is not small compared to the local one. Here it will be
shown that, for the proper choice of variables, cross-terms
disappear in a natural way.
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Introducing remarks

It is necessary to mention that in two our papers (E.K, M.
Spector and V. Zakharov, 1993, 1994) it was shown that this
system can be integrated in the small-slope approximation
analytically. In this case, from the very beginning the system
is pure nonlinear, it does not contain the quadratic part in the
Hamiltonian. We showed that the weak nonlinear behavior for
any initial (small) data results in the formation of singularities
of the root type which are analogous to those found by Moore.
These singularities are consistent with the small-slope
approximation. In the given paper we will demonstrate that
appearance of weak singularities of the root type is the result
of the Kelvin-Helmholtz instability development.
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Original equations and Hamiltonian description

Let y = η(x, t) be the interface position.
For two the velocity potentials Φ1,2 we have two Laplace
equations

∇2Φ1 = 0, y < η(x, t),

∇2Φ2 = 0, y > η(x, t)

with boundary conditions:
As y → ∓∞, Φ1,2 → V1,2x, where V1,2 are constant velocities.
At the interface y = η(x, t):

ρ1

(

∂Φ1

∂t
+

(∇Φ1)
2

2

)

− ρ2

(

∂Φ2

∂t
+

(∇Φ2)
2

2

)

=
ρ1V

2
1 − ρ2V

2
2

2
,

ηt = ∂nΦ1

√

1 + η2x = ∂nΦ2

√

1 + η2x.
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Original equations and Hamiltonian description

It is convenient to introduce the auxiliary velocity potentials,

Φ̃1,2 = Φ1,2 − V1,2x,

These equations are Hamiltonian ones:

ψt = −δH
δη

, ηt =
δH

δψ
,

where ψ(x, t) ≡ ρ1ψ1 − ρ2ψ2, ψ1,2 = Φ̃1,2|y=η and the
Hamiltonian coincides with the total energy of the system,

H = ρ1

∫

y≤η

(∇Φ1)
2 − V 2

1

2
dx dy + ρ2

∫

y≥η

(∇Φ2)
2 − V 2

2

2
dx dy.

These variables, ψ(x, t) and η(x, t), generalize the canonical
variables introduced by V.E. Zakharov for the surface waves.
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Weakly nonlinear regime

First it is convenient to consider the system dynamics in the
center-of-mass frame

ρ1V1 + ρ2V2 = 0.

Then expand H in series relative to canonical variables
assuming |ηx| ≪ 1:

H = H0 +Hint.

Here

H0 =
1

2(ρ1 + ρ2)

∫

ψk̂ψ dx− c2(ρ1 + ρ2)

2

∫

ηk̂η dx

where k̂ = ∂xĤ, Ĥ is the Hilbert transform operator.
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Weakly nonlinear regime

Hence we arrive at the (linear) Kelvin-Helmholtz instability:

ω2 = −c2k2 < 0

where c = V1
√

ρ1/ρ2 = −V2
√

ρ2/ρ1. This instability is
aperiodic.
In dimensionless variables H = H0 +H3 can be written as

H =
1

2

∫

[

ψk̂ψ − ηk̂η
]

dx+
A

2

∫

η
[

(ψx)
2 − (k̂ψ)2 + (ηx)

2 − (k̂η)2
]

dx

−
√
1− A2

∫

η
[

ηxk̂ψ + ψxk̂η
]

dx.

Here

A =
ρ1 − ρ2
ρ1 + ρ2
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Weakly nonlinear regime

Let us perform a canonical transformation from the variables
ψ and η to new ones

f = (ψ + η)/2, g = (ψ − η)/2,

so that

ft =
δH

δg
, gt = −δH

δf
,

and H → 2H. In terms of the new variables,

H =

∫

fk̂g dx+ (A/2)

∫

(f − g)
[

(fx)
2 − (k̂f)2 + (gx)

2 − (k̂g)2
]

dx

−
√
1− A2

∫

(f − g)
[

fxk̂f − gxk̂g
]

dx.
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Weakly nonlinear regime

In linear regime we have two separated equations,

ft − k̂f = 0, gt + k̂g = 0.

f grows exponentially, but g describes damping. Hence, at
times of order of the inverse growth rate, g ≪ f . Then

H =

∫

fk̂g dx+ (A/2)

∫

(f − g)
[

(fx)
2 − (k̂f)2

]

dx

−
√
1− A2

∫

(f − g)
[

fxk̂f
]

dx.
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Weakly nonlinear regime

As the result, the corresponding equations of motion have the
form

ft − k̂f = (A/2)
[

(k̂f)2 − (fx)
2

]

+
√
1− A2

[

fxk̂f
]

,

gt + k̂g = (A/2)
[

(k̂f)2 − (fx)
2 + 2(ffx)x + 2k̂(fk̂f)

]

+
√
1− A2

[

k̂(ffx)−

−A
[

(gfx)x + k̂(gk̂f)
]

−
√
1− A2

[

k̂(gfx)− (gk̂f)x

]

.

Thus, Eq. for f is autonomous, while the equation is linear
with respect to g.
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Root singularities

Expand f by two analytic continuations into the upper and
lower half-planes of x, f±:

f = f+ + f−,

where f± = P̂±f , and P̂± = (1∓ iĤ)/2 are corresponding
projectors . Due to the properties,P̂ 2

± = P̂± and P̂±P̂∓ = 0, the
nonlinear terms split into a sum of functions analytically
continuable into the upper/lower half-planes:

(k̂f)2 − (fx)
2 ≡ (Ĥfx)

2 − (fx)
2 = −2

(

f 2

+x + f 2

−x

)

,

fxk̂f ≡ −fxĤfx = −i
(

f 2

+x − f 2

−x

)

.

Hence the equations for f± are separated into two
independent equations.
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Root singularities

In particular, for f+ ≡ F , we have an autonomous equation:

Ft + iFx = −eiγF 2

x ,

where γ = arccosA. Differentiating this equation with respect
to x leads to the equation of the Hopf-type:

Vt + iVx = −2eiγV Vx,

where V = Fx has a meaning of the complex velocity. The
solution is written in the implicit form:

V = V0(x̃), x = x̃+ it+ 2eiγV0(x̃)t,

where V0(x) = V |t=0, and x̃ is the Lagrangian coordinate. V
has all singularities in the lower half-plane.
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Root singularities

As was shown in our papers (E.K., M. Spector and V.
Zakharov) every point singularity transforms at t > 0 into a cut
with the movable branch points. Their locations are defined
by the condition ∂x/∂x̃ = 0, i.e.,

1 + 2eiγV ′
0(x̃)t = 0.

When the most rapid branch point reaches the real axis, the
analyticity of V breaks down and a singularity appears in the
solution. The motion of the branch point x̃ = X̃(t) in the x
plane is described by

x = X(t) = X̃(t) + it+ 2eiγV0

(

X̃(t)
)

t.
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Root singularities

The collapse time tc is defined from ImX(tc) = 0.
The expansion near singular point gives in the leading order

V = V0(x̃c) + V ′
0(x̃c)δx̃+ . . . ,

δx = iδt+ 2eiγV0(x̃c)δt+ tce
iγV ′′

0 (x̃c)(δx̃)
2 + . . . ,

where δt = t− tc, δx = x− xc, and δx̃ = x̃− x̃c.
Excluding the parameter δx̃ yields

V (x, t) = V0(x̃c) + V ′
0(x̃c)

[

δx− (i+ 2eiγV0(x̃c)) δt

tceiγV ′′
0 (x̃c)

]1/2

+ . . .
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Root singularities

Hence one can see that the derivatives Vx and Vt become
singular. As a result, the boundary shape acquires root
singularities. Hence it follows

Vx(x, t) ≈
V ′
0(x̃c)

2
√

tceiγV ′′
0 (x̃c)

[

δx−
(

i+ 2eiγV0(x̃c)
)

δt
]−1/2

,

i.e., in the general case, Vx(xc, t) ∼ |δt|−1/2.
For the interfacial curvature, specified as ηxx(1 + η2x)

−3/2, is of

ηxx ≈ 2ReFxx = 2ReVx.
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Root singularities

Hence one can find the following universal relationship for the
curvature in the singular point vicinity:

ηxx ≈ Re

{

V ′
0(x̃c)

√

tceiγV ′′
0 (x̃c) (δx− iδt)

}

.
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REMARK 1

In the case when both velocities V1,2 = 0 equation of motion
for analytical continuation of u ∼ ψ+

x has the form of the Hopf
equation

ut + uux = 0.

Hence it is easily to see that at Im x = 0 this equation for real
and imaginary parts, u = V + in, is transformed into two
equations

nt + (nV )x = 0, Vt + V Vx =
1

2
(n2)x.

This system (of the hydrodynamic type) represents
quasiclassical limit of the quintic NLS equation which is the
critical model for the collapse formation.
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