<u>Commemoration symposium</u> <u>of Nikolai Kopnin</u>

Landau Institute for Theoretical Physics Chernogolovka, Russia 24 June 2014

Memory to Kolya Kopnin

Где-то там, средь чухонских озер и болот Наш походный начальник груз по жизни несет. Груз сей будет доставлен, знаю я, потому, Что подвластен Колуну старик одному.

Half quantum vortices

V.P.Mineev

Commissariat a l'Energie Atomique, Grenoble, France Landau Institute for Theoretical Physics, Chernogolovka, Russia

Outline

Vortices in equal spin pairing superfluids Media with half quantum vortices One quantum vortices in rotating vessel with He-3A Half-quantum vortices in rotating vessel with He-3A Half-quantum vortices in Sr2RuO4 Half-quantum vortices in rotating vessel with polar phase of He-3 Superfluid He-3 in aerogel Superfluid He-3 in anisotropic aerogel Phase diagram of superfluid He-3 in anisotropic aerogel Superfluid He-3 in nematically ordered aerogel Nuclear Magnetic Resonance in polar state Conclusion

Vortices in separable equal spin pairing superfluids

$$\begin{split} \Psi &= \Delta(e^{i\varphi_1}|\uparrow\uparrow\rangle + e^{i\varphi_2}|\downarrow\downarrow\rangle) = \Psi_{orb}\Psi_{spin} \\ \Psi_{orb} &= \Delta e^{i\frac{\varphi_1 + \varphi_2}{2}}, \quad \Psi_{spin} = e^{i\frac{\varphi_1 - \varphi_2}{2}}|\uparrow\uparrow\rangle + e^{i\frac{\varphi_2 - \varphi_1}{2}}|\downarrow\downarrow\rangle \\ \hline & \\ \Psi_{orb} \rightarrow \Psi_{orb}, \quad \Psi_{spin} = const, \quad \Psi \rightarrow \Psi \end{split}$$

Half quantum vortex

$$arphi_1 = const, \quad arphi_2 \to arphi_2 + 2\pi$$
 $\Psi_{orb} \to -\Psi_{orb}, \quad \Psi_{spin} \to -\Psi_{spin}, \quad \Psi \to \Psi$

G.Volovik & V.M. 1976

Media with HQV

- 1. Supefluid ³He-A
- 2. Superfluid polar phase in nematically ordered aerogel,
- 3. Superconducting Sr₂RuO₄, J.Jang et al, Science 2011
- 4. Exciton-polariton condensate, K.Lagudakis et al, Science 2009

$$\sim \mathbf{e}_{\lambda} \exp(i \varphi)$$

5. Charge Density Waves - CDW Spin Density Waves - SDW Super Solids Fulde-Ferrel-Larkin-Ovchinnikov - FFLO superconducting states

$$\Psi(x,y) = A\cos(\mathbf{k}\boldsymbol{\rho} + \phi(x,y))e^{i\varphi(x,y)}$$

One quantum vortices in rotating vessel with He-3A

$$\Psi_{\alpha}^{A} = \Psi_{\alpha}^{spin} \Psi^{orb}(\mathbf{k}) = A_{\alpha i}^{A} \hat{k}_{i} = \Delta(T) V_{\alpha} (\Delta_{i}' + i \Delta_{i}'') \hat{k}_{i} / \sqrt{2}$$

$$\mathbf{\Delta}' \qquad \mathbf{\Delta}''$$

$$\Delta' + i\Delta'' = e^{i\varphi}(\hat{x} + i\hat{y})$$
 $\mathbf{l} = \Delta' \times \Delta'' = const$ $\mathbf{V} = const$

$$\mathcal{F}_{\nabla} = \int d^{3}\mathbf{r} \left(K_{1} \frac{\partial A_{\alpha i}}{\partial x_{j}} \frac{\partial A_{\alpha i}^{\star}}{\partial x_{j}} + K_{2} \frac{\partial A_{\alpha i}}{\partial x_{j}} \frac{\partial A_{\alpha j}^{\star}}{\partial x_{i}} + K_{3} \frac{\partial A_{\alpha i}}{\partial x_{i}} \frac{\partial A_{\alpha j}}{\partial x_{j}} \right)$$
$$f_{n=1} = \pi |\Delta|^{2} (2K_{1} + K_{2} + K_{3}) \ln \frac{r_{v}}{\xi}$$

$$F_{n=1} = n_v f_{n=1}$$

 $n_v = \frac{2\Omega}{\Gamma} \qquad \Gamma = \frac{h}{2m_3} = 0,66 \cdot 10^{-3} \frac{cm^2}{sec} \qquad r_v = n_v^{-1/2} \approx 10^{-2} cm \quad at \quad \Omega \approx 3 \ rad/sec$

Half-quantum vortices in rotating vessel with He-3A

$$\mathbf{j} = \frac{c}{4\pi\lambda^2} \left(\nabla \varphi - \frac{2\pi}{\Phi_0} \mathbf{A} \right)$$

$$\oint \mathbf{j} doldsymbol{\gamma} = rac{c}{4\pi\lambda^2} \left(2\pi N - 2\pi rac{\Phi}{\Phi_0}
ight)$$

$$\mu_z = \frac{1}{2c} \int (\mathbf{j} \times \mathbf{r})_z dV = \Delta \mu_z N - \chi_M H$$

$$H^z_{c1} = \frac{\Phi_0}{2\pi R^2} \approx 8~G$$

Sr₂RuO₄ - A-phase type superconductor

Superconducting Sr₂RuO₄ ring magnetic moment

$$\Delta \mu_z = 4.4 \times 10^{-14} emu$$

J.Jang et al Science 2011

Half quantum vortices in Sr2RuO4

J.Jang et al Science 2011

Half-quantum vortices in rotating vessel with superfluid polar phase of He-3 $\Psi^{pol}_{\alpha} = \Psi^{spin}_{\alpha} \Psi^{orb}(\mathbf{k}) = A^{pol}_{\alpha i} \hat{k}_i = \Delta(T) V_{\alpha} p_i \hat{k}_i e^{i\phi}$ Cooper pair in polar state Half-quantum vortex $\phi = \varphi/2$ $\mathbf{p} = const$ $\mathbf{V} = \hat{x}\cos\frac{\varphi}{2} - \hat{y}\sin\frac{\varphi}{2}$ $F_{so} = \frac{g_D}{5|\Delta|^2} \left(A_{\alpha\alpha} A^{\star}_{\beta\beta} + A_{\alpha i} A^{\star}_{i\alpha} - \frac{2}{3} A_{\alpha i} A^{\star}_{\alpha i} \right) = \frac{2}{5} g_D^{pol} \left((\mathbf{V}\mathbf{p})^2 - \frac{1}{3} \right)$ $F_{n=1} = n_v f_{n=1} = F_{n=1/2} = 2n_v f_{n=1/2} = n_v \pi |\Delta|^2 (2K_1 + K_2 + K_3) \ln \frac{r_v}{\xi}$

Now, there is no problem with spin-orbit coupling but where to get a polar phase ?

A sketch of silica aerogel showing regions containing He-3 (yellow) threated by strands and aggregates of silica (blue)

Superfluid He-3 in aerogel

FIG. 4. Phase diagram of superfluid ³He confined to 99.3% porosity aerogel in a magnetic field of 28.4 mT. Triangles represent $T_{c,aero}$, while circles represent the equilibrium value of $T_{AB,aero}$. For comparison, the bulk phase diagram is also given.

Baumgardner and Osheroff, PRL 2004

In absence of aerogel anisotropy all superfluid phases with p-pairing have the same critical temperature

 $F = \alpha_0 (T - T_c) A_{\alpha i} A^{\star}_{\alpha i} + fourth \quad order \quad terms = \alpha_0 (T - T_c) |\Delta|^2 + fourth \quad order \quad terms$

 $(T_c - T_{c0})/T_{c0} \approx -\xi \delta/\xi_a^2$

Superfluid He-3 in nematically ordered aerogel

$Al_2O_3 \cdot H_2O$ strands

with a characteristic diameter of $\sim 5-10$ nm and a characteristic separation of $\sim 70-80$ nm. Strands are oriented along nearly the same direction at a macroscopic distance $\sim 3-5$ mm.

Dmitriev et al, JETP Lett 2012

Superfluid He-3 in anisotropic aerogel

Anisotropy lifts the degeneracy between superfluid phases

$$F^{(2)} = F_i^{(2)} + F_a^{(2)} = \alpha_0 (T - T_c) |\Delta|^2 + \eta_{ij} A_{\alpha i} A_{\alpha j}^*$$

Media uniaxial anisotropy with anisotropy axis along \hat{z} is given by the traceless tensor

Ζ

$$\eta_{ij} = \eta \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{array} \right)$$

(i) B phase
$$A^B_{\alpha i} = \Delta R_{\alpha i} e^{i\phi}$$
 $F^{(2)}_a(A^B_{\alpha i}) = 0$

$\eta < 0$

(ii) A-phase
$$A_{\alpha i} = \frac{\Delta}{\sqrt{2}} V_{\alpha} (\hat{x}_i + i\hat{y}_i)$$
 $\mathbf{l} = \hat{z}$ $F_a^{(2)} = \eta |\Delta|^2$ $T_c^A = T_c - \eta/\alpha_0$

$|m \eta> 0$

(iii) A phase $A_{\alpha i} = \frac{\Delta}{\sqrt{2}} V_{\alpha} \left(\hat{z}_i + i(\hat{x}_i \cos \varphi(\mathbf{r}) + \hat{y}_i \sin \varphi(\mathbf{r})) \right)$ $\mathbf{l} = -\hat{x} \sin \varphi(\mathbf{r}) + \hat{y} \cos \varphi(\mathbf{r})$

$$F_a^{(2)} = -\eta |\Delta|^2 / 2$$
 $T_c^A = T_c + \eta / 2\alpha_0$

(iv) Polar phase $A_{\alpha i} = \Delta V_{\alpha} \hat{z}_i e^{i\phi}$ $F_a^{(2)} = -2\eta |\Delta|^2$ $T_c^{polar} = T_c + 2\eta/\alpha_0$

Axipolar phase in uniaxially anisotropic aerogel

$$F_{cond} = \alpha A^{\star}_{\alpha i} A_{\alpha i} + \eta_{ij} A_{\alpha i} A^{\star}_{\alpha j}$$

 $+\beta_1|A_{\alpha i}A_{\alpha i}|^2+\beta_2A^{\star}_{\alpha i}A_{\alpha j}A^{\star}_{\beta i}A_{\beta j}+\beta_3A^{\star}_{\alpha i}A_{\beta i}A^{\star}_{\alpha j}A_{\beta j}+\beta_4(A^{\star}_{\alpha i}A_{\alpha i})^2+\beta_5A^{\star}_{\alpha i}A_{\beta i}A^{\star}_{\beta j}A_{\alpha j}$

Axipolar phase
$$A_{\alpha i} = V_{\alpha} \left[a \hat{z}_i + i b (\hat{x}_i \cos \varphi(\mathbf{r}) + \hat{y}_i \sin \varphi(\mathbf{r})) \right]$$

$$F_{cond} = (\alpha - 2\eta)a^2 + (\alpha + \eta)b^2 + \beta_{12}(a^2 - b^2)^2 + \beta_{345}(a^2 + b^2)^2$$

$$\beta_{12} = \beta_1 + \beta_2, \qquad \beta_{345} = \beta_3 + \beta_4 + \beta_5$$
$$\beta_{12345} = \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5$$

polar
$$T_{c1} = T_c + 2\frac{\eta}{\alpha_0}$$
 $a^2 = a_0^2 = -\frac{\alpha_0(T - T_{c1})}{2\beta_{12345}}, \quad b = 0.$

axipolar
$$T_{c2} = T_c - \frac{\eta}{\alpha_0} \frac{3\beta_{345} - \beta_{12}}{2\beta_{12}} = T_c - \frac{5 - 1.2\delta}{2 + 0.15\delta} \frac{\eta}{\alpha_0}$$

$$a = a_0 + \delta a, \quad \delta a = -\frac{\beta_{345} - \beta_{12}}{2\beta_{12345}} \frac{b^2}{a_0}, \quad b^2 = -\frac{\alpha_0 (T - T_{c2})}{4\beta_{345}}$$

Phase diagram of superfluid He-3 in anisotropic aerogel

Zhu and Walker, PRB1987; Plumer et al, PRL 1988

Aoyama and Ikeda, PRB 2006

Small anisotropy

At small anisotropy when $T_{c1} \approx T_{c2}$ we deal in fact with one phase transition from normal to superfluid state with order parameter amplitudes

$$a = b = \Delta_A / \sqrt{2}$$
 $\Delta_A^2 = -\frac{\alpha_0 (T - T_{cA})}{2\beta_{345}}$ $T_{cA} = T_c + \frac{\eta}{2\alpha_0}$

and randomly distributed $\varphi(\mathbf{r})$ angle due to local anisotropy in Imry-Ma clusters.

Nuclear Magnetic Resonance in polar state

$$2\omega\Delta\omega = 2\omega(\omega - \gamma H) = -\frac{2\gamma^2}{\chi} \frac{\partial \langle F_{so} \rangle|_{min}}{\partial\cos\beta}$$

I.Fomin,1976

$$F_{so} = C_1 \left(A_{\alpha\alpha} A^{\star}_{\beta\beta} + A_{\alpha i} A^{\star}_{i\alpha} \right) + C_2 \left(2A_{zz} A^{\star}_{\beta\beta} + c.c. \right) + const$$
$$A_{\alpha i} = V_{\alpha} \left[a\hat{z}_i + ib(\hat{x}_i \cos\varphi(\mathbf{r}) + \hat{y}_i \sin\varphi(\mathbf{r})) \right]$$

$$F_{so} = \left[2(C_1 + C_2)a^2 - C_1b^2\right] \langle (\mathbf{V}(t)\hat{z})^2$$
$$F_{so} = 2(C_1 + C_2)\frac{\alpha_0(T_{c1} - T)}{2\beta_{12345}} \langle (\mathbf{V}(t)\hat{z})^2 \rangle$$

 $\mathbf{V}(t) = R_x(\mu)R_z(-\omega_L t)R_y(\beta)R_z(\omega_L t + \varphi)\hat{x}$

$$U_D = \langle (\mathbf{V}(t)\hat{z})^2 \rangle = \frac{1}{4}\sin^2\mu \left[(\cos\beta + 1)^2 \sin^2\varphi + (\cos\beta - 1)^2/2 \right] + \frac{1}{2}\cos^2\mu (1 - \cos^2\beta)$$

$$2\omega\Delta\omega = -\Omega_{pol}^2 \frac{\partial U_D|_{min}}{\partial\cos\beta}, \qquad \qquad \Omega_{pol}^2 = \frac{2\gamma^2}{\chi} 2(C_1 + C_2) \frac{\alpha_0(T_{c1} - T)}{2\beta_{12345}}$$

NMR in homogeneous and nonhomoheneos polar state

$$A_{\alpha i} = \Delta V_{\alpha} \hat{z}_i e^{i\phi}$$

$$\Omega \wedge \hat{z} \wedge h$$

$$U_D = \frac{1}{4}\sin^2\mu \left[(\cos\beta + 1)^2 \sin^2\varphi + (\cos\beta - 1)^2/2 \right] + \frac{1}{2}\cos^2\mu (1 - \cos^2\beta)$$

 $U_D = \langle (\mathbf{V}(t)\hat{z})^2 \rangle$

Space homogeneous $\mathbf{V} = const$ - (i) $\Omega = 0$, (ii) $\Omega > \Omega_{c1}$ - single quantum vortices

$$\{U_D\}_{min}(\varphi = 0) = \frac{1}{8}\sin^2\mu(\cos\beta - 1)^2 + \frac{1}{2}\cos^2\mu(1 - \cos^2\beta)$$

$$2\omega\Delta\omega = \Omega_{pol}^2 \left(\cos\beta + \frac{1}{4}\sin^2\mu(1-5\cos\beta)\right)$$

Space nonhomogeneous $\mathbf{V}(\mathbf{r})$ $\Omega > \Omega_{c1}$ - half-quantum vortices

$$\langle U_D \rangle_{\varphi} = \frac{1}{4} \sin^2 \mu (\cos^2 \beta + 1) + \frac{1}{2} \cos^2 \mu (1 - \cos^2 \beta)$$

$$2\omega\Delta\omega = \Omega_{pol}^2 \left(\cos\beta - \frac{3}{2}\sin^2\mu\cos\beta\right)$$

It is instructive to make formal comparison of the obtained frequency shift with the frequency shift that occurs in case of direct transition to the Imry-Ma A-phase. This case

$$2\omega\Delta\omega = \frac{1}{2}\Omega_A^2 \left(\cos\beta + \frac{1}{4}\sin^2\mu(1-5\cos\beta)\right), \qquad \Omega_A^2 = \frac{2\gamma^2}{\chi}(C_1 + 2C_2)\frac{\alpha_0(T_{cA} - T)}{2\beta_{345}}.$$

Then the slopes of linear temperature dependence of Ω_{pol}^2 and Ω_A^2 are related to each other as follows

$$\frac{d\Omega_{pol}^2}{dT} / \frac{d\Omega_A^2}{dT} = \frac{2(C_1 + C_2)}{C_1 + 2C_2} \frac{\beta_{345}}{\beta_{12345}} = \frac{4(C_1 + C_2)}{3(C_1 + 2C_2)} \frac{1 - 0.525\delta}{1 - 0.3\delta}$$

Experimentally (Dmitriev, unpublished) this ratio at small pressures is close to 4/3.

$$C_2 = 0$$

$$r = \frac{3\beta_{345} - \beta_{12}}{4\beta_{345}} = \frac{5 - 3.22\delta}{8 - 4.2\delta}$$

Conclusion

The superfluid He-3 under rotation has been discussed first in 1977 by G.E.Volovik and N.B.Kopnin.

Since that time the singular single quanta vortices as well nonsingular vortices with 2 quanta of circulation have been revealed in rotating He-3A. He-3A supports also the existence of vortices with half-quantum of circulation. However, the half-quantum vortices in open geometry always possess an extra energy due to spin-orbital coupling leading to formation of domain wall at distances larger than dipole length ~10⁻³ cm from vortex axis. Fortunately the same magnetic dipole-dipole interaction does not prevent the existence of half-quantum vortices in the polar phase of superfluid He-3 recently discovered in peculiar porous media "nematically ordered" aerogel.