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Due to strong intrinsic 
pinning motion is possible 
only along the layers

Shear Instabilities of a Vortex Lattice in 
Layered Superconductors
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stiff lattice:
misfit parameter

… are an old problem in condensed matter physics. The classic problem has been defined in 
1D by Frenkel and Kontorova and by Frank and van der Merwe

substrate potential

particle lattice

weak substrate

strong substrate

with lattice deformations:
effective misfit

how to go from 
limit to the other ?

Introduction
Competing Structures  …



Continuum (elastic) limit: 
Sine-Gordon soliton

energy

width

repulsion

density

Competing Structures  …

… are an old problem in condensed matter physics. The classic problem has been defined in 
1D by Frenkel and Kontorova and by Frank and van der Merwe

in registry in registry

out of registry

dilution soliton 
with missing 
particle

with lattice solitons:
effective misfit

Commensurate-
Incommensurate (CI) 

transition

I-phase: periodic 
soliton lattice

solitons flooding the sample, 
similar to Hc1 transition with 

solitons ⇔ vortices

Introduction



Introduction

… many problems in 2D, the classic one is Krypton on Graphite, Xenon on Platinum, etc.

Rare gas monolayers on graphite (                 )

from McTague et al.,
PRB 19, 5299 
(1979)

no C-phase

C-phase
no C-phase

C-phase

Ne

Ar
Kr

Xe

- `real’ and hence badly tunable system
- triangular lattice on triangular substrate
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Introduction

… many problems in 2D, the appropriate one for this conference are vortices pinned in an 
artificial defect lattice

- still a `real’, but better tunable system
- triangular lattice on a square substrate

Ginzburg Landau theory
- close to matching field, hence s ≈ 1 
- various low energy phases, isosceles, period doubled
- phase diagram, p = pinning strength, T = temperature

Zhuravlev and Maniv, Phys. Rev. B (2003)
Reichhardt et al., Phys.  Rev. B (2001)

Molecular Dynamics of particles
- close to matching field (and 
above)
- emphasis on melting

SPS, square pinned solid
TPS, triangular pinned solid
FS, floating solid
L, liquid

Continuum elastic theory
- various matching fields 
- various low energy phases, deformed triangular, squared, 
…
- critical currents

Pogosov, Rakhmanov, and Moshchalkov, Phys. Rev. B (2003)
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Introduction

… many problems in 2D, the newest one which is fully tunable is implemented with cold 
gases

- dipolar molecules
- stabilized by vertical electrical field
- subject to (any form of) an optical lattice

dipolar molecules:
long-range, pure repulsive 
interaction D/R3 square optical lattice 

2 modes

Competing Structures  …



the system

- dipolar molecules
- stabilized by vertical electrical field
- subject to (any form of) an optical lattice

dipolar molecules:
long-range, pure repulsive 
interaction D/R3 square optical lattice 

2 modes

drop fluctuations, 
both quantum and 
classical (T=0)

… many problems in 2D, the newest one which is fully tunable is implemented with cold 
gases

Competing Structures  …



interaction energy
characteristic scale:  dipolar energy

Energy scales

need characteristic 
scale for potential

geometry

b

a

h

 1/44 3 1.0746 a b b 

/ 1 0.0746 s b h  
incommensurability parameter



find minimal energy state ofGibbs free energy 

the external pressure/field defines 
the density since the purely 
repulsive system does not have a 
generic equilibrium density 

generic 
equilibrium 
density 

Task
the system



?

State diagram
the system



simplest anticipated phase diagram
at fixed commensurate density

doubly locked 
phasesingly locked 

phase

floating 
phase

State diagram
simple periodic 

phases



A detailed analysis provides the following picture:

hexagonal
locked square

• the square lattice phase undergoes a shear instability (symmetry breaking)

State diagram
simple periodic 

phases



Effective model (pd phase)

with

Period-doubled phase: Rectangular Bravais lattice 
with basis

In-cell distortion
Center of mass coordinate

Translational locking

Minima energy

Distortion amplitude

(Force balance)



period doubled
zig-zag phase

isosceles triangular

intracell distortion

locked square

• the period-doubled phase goes into the isosceles triangular phase (Bravais lattice)

A detailed analysis provides the following picture:
• the square lattice phase undergoes a shear instability (symmetry breaking)

State diagram
simple periodic 

phases



dominant 
harmonic at 
small k

subdominant 
harmonic at large k

• a small substrate potential distorts and rotates the hexagonal phase

rotated & distorted
hexagonal
locking angle

Novaco & McTague

substrate potential 
with 1st harmonic

2nd harmonic

• the period-doubled phase goes into the isosceles triangular phase (Bravais lattice)

A detailed analysis provides the following picture:
• the square lattice phase undergoes a shear instability (symmetry breaking)

State diagram
simple periodic 

phases

determined by
misfit parameter s



State diagram
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We have gone 

from  a simple consideration

to a more sophisticated result

isosceles and period 
doubled phases, 
Zhuravlev and Maniv

simple periodic 
phases



We have gone 

from  a simple consideration

to a more sophisticated result

solitons

State diagram
solitonic phases
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Consider only dominant mode of 
the substrate potential

effective 1D model

small lattice misfit

misfit in K-space

start from weak potential and small misfit parameter, then the 
system is well described  by a distorted hexagonal phase

Resonance approximation (V. L. Pokrovsky and  A. L. Talapov 1980) 
solitonic phases

2 2 subp 2 (p, )E C u E u

sub 2(p) / pu f C

deformation is biggest for smallest  p



Near the transition:
single soliton 
energy

chemical potential

soliton-soliton 
interaction

soliton density 

Resonance approximation (V. L. Pokrovsky and A. L. Talapov, 1980) 
solitonic phases



order
“sharp”

phase transition

Resonance approximation (Pokrovsky and Talapov) 
solitonic phases
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Problem is fully two-dimensional, with additional constraints on the 
solitons.
We obtain several candidate solitons:

Two modes in substrate potential
solitonic phases

`horizontal, 
dilution’ type 
domain wall

(0,1/2)

V

y

V

y

s

d h

Twin A

Twin B

`diagonal, 
shear’ type 

domain wall
(-1,1)

true soliton
(-1,1/2)

resembles 
PT soliton



Problem is fully two-dimensional, with additional constraints on the 
solitons.
We obtain several candidate solitons:

Two modes in substrate potential
solitonic phases

V

y

V

y

s

d h
`horizontal, 

dilution’ type 
domain wall

`diagonal, 
shear’ type 

domain wall

Twin A

Twin Bresembles 
PT soliton

small double 
periodic effective 

potential

true soliton



Two modes in substrate potential
solitonic phases

`horizontal, 
dilution’ type 
domain wall

`diagonal, 
shear’ type 

domain wall

resembles 
PT soliton

soliton width

soliton drive

soliton energy

soliton entry

large κ → shear soliton wins small misfit s → dilution soliton wins

Task, find the best soliton/domain wall 
varying type (m,n) and angle θ

second harmonic geometric parameters l, m



Two modes in substrate potential
solitonic phases

Analytic calculations …

… are not good enough due to large anharmonic effects,  specially for shear type solitons 

Numerical calculations 
…

… are doable

etc.
So far, we have found that the first dilution 
domain-wall (0,1/2) wins the game, destroying 
the period doubled phase at a  critical potential

Surprisingly, the optimal domain-wall appears 
at a finite angle              away from horizontal.

Scenario:

When (0,1/2) domain-walls flood the 
sample, they eliminate the second 
substrate mode. At lower substrate 
potential,  PT solitons enter the system 
and complete the transition. .

0.074h
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Phase diagram
The final scenario for the conversion of the 

square to hexagonal lattice seems to be

hexagonal floating ← rotated distorted locked hexagonal

← period-doubled one-fold locked lattice ← two-fold locked square lattice

← Pokrovski-Talapov shear-soliton lattice  ← rotated dilution domain-wall lattice

square

Period-doubled

solitonic


