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Let we have some associative algebra, commuting elements A1, . . . , An, A
−1
1 ,

. . . , A−1
n (−1 is just a notation at the moment) belonging to this algebra. For an

arbitrary element B of this algebra we introduce

SB(A1, . . . , An) = A1A2BA
−1
1 A−1

2 (A1−A2)+(A1−An−1)AnBA
−1
n +cycle(1, . . . , n),

Because of commutativity of the set A1, . . . , An, A
−1
1 , . . . , A−1

n and associativity of

the algebra we get that

SB(A1, A2) = 0, SB(A1, A2, A3.A4) = SB(A1, A2, A3) + SB(A1, A3, A4),

and so on for larger n. Now, assuming that associative algebra has unity and A−1
i

is inverse of Ai we get that also

SB(A1, A2, A3) ≡ A1A2BA
−1
1 A−1

2 (A1 −A2) + (A1 − A2)A3BA
−1
3 +

+ cycle(1, 2, 3) = 0

again for any set of commuting elements A1, A2, A3 and any element B. Then all

SB(A1, . . . , An) with n ≥ 3 also equal to zero consequently.



Let us denote

B(m) ≡ B(m1,m2,m3) =

(

3
∏

n=1

(A− an)
mn

)

B

(

3
∏

n=1

(A− an)
mn

)−1

,

and let

B(1)(m) = B(m1 + 1,m2,m3), B(2)(m) = B(m1,m2 + 1,m3), . . . ,

Bi(m) = B(i)(m)−B(m).

Then the identity means that function B(m) obeys difference equation

B(12)(A1 −A2) + (A1 − A2)B
(3) + cycle(1, 2, 3) = 0

Let B operator in V ⊗W , A operator in V , and a1, a2, a3 be commuting operators

in W . Choosing

Ai = A⊗ I − I ⊗ ai, i = 1, 2, 3,

Then

B(12)(a1 − a2) + (a1 − a2)B
(3) + cycle(1, 2, 3) = 0,

or

B12(a1 − a2) + [a1 − a2, B3] + cycle = 0,



Let we have (infinite) matrix F = {Fm,n}m,n∈Z. Any such matrix can be

written in the form F =
∑

n∈Z fn T
n, where fn are diagonal matrices fn =

diag{Fm,m+n}m∈Z and T is operator of shift: T l.m = δl+1,m. For any diagonal

matrix f = diag{fm} we have that (T f T −1)lm = fm−1δlm. Product of two

matrices can be written in the form F G =
∑

n fn
(
∑

m T n−m gm T m−n
)

T n.

Let us perform “shifted” Fourier transform: F (ζ, ζ ′) =
∑

m,m′∈Z

ζ ′m
′−mζ−mFm,m′,

where |ζ|, |ζ ′| = 1. Or F (ζ, ζ ′) =
∑

n (
∑

m ζ
−m(fn)m) ζ

′n. Next we formally

continue this kernels in the complex domain with respect to ζ ′:

F (ζ, ζ ′) −→ F (ζ ; z), z, ζ ∈ C, |ζ| = 1

Below we realize elements of the associative algebra as such functions (distributions)

with composition law

(FG)(ζ ; z) =

∮

|ζ ′|=1

dζ ′

2πiζ ′
F (ζζ

′
; zζ ′)G(ζ ′; z),

that in the matrix case is equivalent to the standard product of matrices.



For the unity matrix I we get

I(ζ ; z) = δc(ζ)

and for the shift operator T :

T (ζ ; z) = zδc(ζ).

If F (ζ ; z) = f(z)δc(ζ) then similarity transformation of an arbitrary operator G

has kernel

(FGF−1)(ζ ; z) =
f(ζz)

f(z)
G(ζ ; z).

All standard operations on matrices can be reformulated in terms of their kernels.

Say, kernel of Hermitian conjugation of F equals:

F †(ζ ; z) = F (ζ; ζ/z).

But there appears a new operation:

(∂F )(ζ ; z) =
∂F (ζ, z)

∂z
,

that is essential for the following construction.



Function B(m) can be considered as function of two “space” variables (say, m1

and m2) and one “time” variable (correspondingly, m3) with evolution given by

the Hirota equation. We realize elements A and B(m) of an associative algebra as

extended operators in the above sense with kernels A(ζ ; z) and B(ζ ; z), that are

operators in the auxiliary space W . We impose condition that

B(m1,m2,m3; ζ1, ζ2; z) = ζm1

1 ζm2

2 B(m3; ζ1, ζ2; z)

This gives two conditions:

B(1) = (A−a1)B(A−a1)
−1 = T1BT

−1
1 , B(2) = (A−a2)B(A−a2)

−1 = T2BT
−1
2

This means that we can choose A = T1 + a1, i.e. A(ζ ; z) = (z + a1)δc(ζ). Now

the second condition takes the form

B(2) = T2BT
−1
2 = (T1 + a12)B(T1 + a12)

−1, a12 = a1 − a2.

i.e., there exists operator L0 = T2 − T1 + (a2 − a1)I such that L0B = T2BT
−1
2 L0,

or T2B(T1 + a12) = (T1 + a12)BT2. As well B(3) = (T1 + a13)B(T1 + a13)
−1. If

B(ζ ; z) is a matrix in the spaceW , and ai are diagonal matrices in this space, then

above relation means that [z(ζ1 − ζ2) + a12,i − ζ2a12,j]Bij(ζ ; z) = 0, or that there

exists representation Bij(ζ ; z) = bij(ζ)δ(z(ζ1 − ζ2) + a12,i − ζ2a12,j).



We introduce operator ν with kernel ν(ζ ; z) = ν(ζ ; z1) as solution of the following

d-bar problem:

∂ν = νB, lim
z→∞

ν(ζ ; z) = δc(ζ)

and assume its unique solvability. The m-dependence is introduced by ∂ν(m) =

ν(m)B(m). In particular, ∂1ν
(1) = ν(1)T1BT

−1
1 , or ∂1(ν

(1)T1) = (ν(1)T1)B. Let

us specify the 1/z1-term of expansion of ν(ζ, z) at infinity:

ν(m, ζ ; z) = δc(ζ) +
u(m, ζ)

z1
+ . . . .

Then limz1→∞ ν(1)T1 = T1 + u(1). Then ν(1) = T1νT
−1
1 and u(1) = T1uT

−1
1 (the

r.h.s. is independent of z). In analogy: ∂1(ν
(2)(T1 + a12)) = (ν(1)(T1 + a12))B and

then

ν(2)(T1 + a12) = (T1 + a12 + u(2) − u(1))ν.

In the same way we derive ν(3)(T1 + a13) = (T1 + a13 + u(3) − u(1))ν.



We introduce:

χ(m1,m2,m3, z) =

∮

|ζ1|=1

dζ1 ζ
m1−1
1

2πi

∮

|ζ2|=1

dζ2 ζ
m2−1
2

2πi
ν(m3, ζ ; z),

and ϕ(m, z) = χ(m, z)E(m, z), where E(m, z) = zm1(z+a12)
m2(z+a13)

m3. Then

from above we get:

ϕ(2) = ϕ(1) +
(

u(2) − u(1) + a12
)

ϕ,

ϕ(3) = ϕ(2) +
(

u(3) − u(2) + a23
)

ϕ,

ϕ(1) = ϕ(3) +
(

u(1) − u(3) + a31
)

ϕ,

so the Lax pair is any two of these equations. Compatibility condition gives:

u(12)(u(2) − u(1) + a12) + a12u
(3) + cycle = 0

that is Hirota difference equation in noncommutative case. It is obvious nonlin-

earization of the original identity

B(12)a12 + a12B
(3) + cycle = 0.



Let us denote

v(m) = u(m)−m1a1 −m2a2 −m3a3,

then all ai are excluded from the equation and Lax pair:

ϕ(2) = ϕ(1) +
(

v(2) − v(1)
)

ϕ,

ϕ(3) = ϕ(2) +
(

v(3) − v(2)
)

ϕ,

ϕ(1) = ϕ(3) +
(

v(1) − v(3)
)

ϕ,

and

v(12)(v(2) − v(1)) + cycle(1, 2, 3) = 0,

while condition on asymptotics is essential (u(m) is decaying).



Limiting cases. If we substitute ak → xak, where x is c-number, we get

B(k) = ak

[

B −
1

x
Btk

]

a−1
k + . . . , x→ ∞

where ∂tk = [Aa−1
k , ·].

Limit a3 → ∞. Let k = 3. Then 1/x term gives identity

B(12)a12 + a3(B
(2) − B(1))t3 + a2B

(1) − a1B
(2)+

+ a3B
(2)a−1

3 a2 − a3B
(1)a−1

3 a1 + a12a3Ba
−1
3 = 0.

Thus,

B(1) = T1BT
−1
1 , B(2) = (T1 + a12)B(T1 + a12)

−1, Bt3 = [(T1 + a1)a
−1
3 , B],

so that ∂(νt3 + ν(T1 + a1)a
−1
3 ) = (νt3 + ν(T1 + a1)a

−1
3 )B. Thus again taking

asymptotic into account we derive: νt3 +ν(T1+a1)a
−1
3 = a−1

3 (T1+a3ua
−1
3 −u(1)+

a1)ν. Finally for w(m1,m2, t3) = u(m1,m2, t3) −m1a1 −m2a2 we get Lax pair

and evolution equation

ψt3 = ψ(1) − w1ψ,

ψ(2) = ψ(1) + (w2 − w1)ψ,

(w2 − w1)t3 + w12(w2 − w1) + [w1, w2] = 0.



Limit a2 → ∞. The identity takes the form:

(a2Ba
−1
2 − a3Ba

−1
3 )(1)a1 + (a2Bt2 − a3Bt3)

(1)−

− a2a3Bt2a
−1
3 + a3a2Bt3a

−1
2 − a1a2Ba

−1
2 + a1a3Ba

−1
3 = 0,

that is antisymmetric with respect to indexes 2 and 3. Now we have

B(1) = T1BT
−1
1 , Bt2 = [(T1 + a1)a

−1
2 , B], Bt3 = [(T1 + a1)a

−1
3 , B],

Substitution: v(m1, t2, t3) = u(m1, t2, t3)−m1a, Lax pair

αψt2 = ψ(1) + [αwα−1 − w(1)]ψ,

α−1ψt3 = ψ(1) + [α−1wα− w(1)]ψ,

and equation:
(

wα − αw(1)
)

t2
−
(

wα−1 − α−1w(1)
)

t3
+ [wα − αw(1), wα−1 − α−1w(1)] = 0.

where a and α are constant, mutually commuting matrices.



Limit a1 → ∞. Limiting identity reads as

a1∂t1(a2Ba
−1
2 − a3Ba

−1
3 ) + cycle = 0.

we get that the Lax pair is any two equations of the system

a1 ϕt1 = a2 ϕt2 +(a1ua
−1
1 − a2ua

−1
2 )ϕ,

a2 ϕt2 = a3 ϕt3 +(a2ua
−1
2 − a3ua

−1
3 )ϕ,

a3 ϕt3 = a1 ϕt1 +(a3ua
−1
3 − a1ua

−1
1 )ϕ,

and equation of compatibility is

a1
(

a3ua
−1
3 − a2ua

−1
2

)

t1
+ a2a3ua

−1
2 a−1

3

(

a3ua
−1
3 − a2ua

−1
2

)

+ cycle(1, 2, 3) = 0.



Limits of equal ai. We write aj = ai + xbij, where bij is some operator

(commuting with all ak) and x is a parameter, x→ 0. Then

(A− aj)B(A− aj)
−1 → (A− ai)

(

B − x[bij(A− ai)
−1, B] + o(x)

)

(A− ai)
−1,

that means that we can introduce, say, tij by means of ∂tijB = [bij(A− ai)
−1, B].

Then

B(j) → B(i) − xB
(i)
tij

+ o(x).

Limit a3 → a1. Identity in the first order on x gives

B
(12)
t3

a12 − a12B
(1)
t3

−
(

B(12) −B(11)
)

b3 + b3
(

B(2) − B(1)
)

= 0,

where

B(1) = T1BT
−1
1 , B(2) = (T1 + a12)B(T1 + a12)

−1, Bt3 = [b3T
−1
1 , B].

Introducing v(m1,m2, t3) = u(m1,m2, t3)− a1m1 − a2m2 + b3t3 we get finally

ϕ(2) = ϕ(1)+(v2 − v1)ϕ,

ϕt3 = vt3 ϕ
(−1) .

and equation:

(v(2) − v(1))(1)v
(1)
t3

− v
(12)
t3

(v(2) − v(1)) = 0.



Limit a2 → a1. We set now a2 = a1 + xb2 and consider limit x → 0. Identity

takes the form
(

B(1)b3 − b3B
)

t2
=
(

B(1)b2 − b2B
)

t3
,

B(m1, t2, t3) = Tm1

1 e(t2b2+t3b3)T
−1

1 BT−m1

1 e−(t2b2+t3b3)T
−1

1 ,

We introduce v(m1, t2, t3) = u(m1, t2, t3) − a1m1 + b2t2 + b3t3, Lax pair and

equation:

ϕt2 = vt2 ϕ
(−1),

ϕt3 = vt3 ϕ
(−1),

v
(1)
t2
vt3 = v

(1)
t3
vt2.



Limit a3 → ∞ and a2 → a1. Noncummutative Toda chain. Identity:

B(1)b2 + a3Bt2t3 − b2B − a1Bt2 + a3Bt2a
−1
3 a1−

− a3Ba
−1
3 b2 + b2a3B

(−1)a−1
3 = 0.

Correspondingly,

B(1) = T1BT
−1
1 , Bt2 = [b2T

−1
1 , B], Bt3 = [(T1 + a1)a

−1
3 , B].

Lax pair and equation:

ψt2 = wt2ψ
(−1),

ψt3 = ψ(1) − w1ψ,

wt2t3 + wt2w−1 + w1wt2 = 0,

where asymptotically w(m1, t2, t3) → −m1a1a
−1
3 + b2a

−1
3 t2. In the commutative

case wt2 = b2a
−1
3 eφ−1, and φt2t3 = a1a

−1
3

(

e−φ1 − eφ−1

)

.


