Commutator identities on associative algebras and integrable equations in noncommuatative case

A. Pogrebkov

Let we have some associative algebra, commuting elements $A_{1}, \ldots, A_{n}, A_{1}^{-1}$, \ldots, A_{n}^{-1} (-1 is just a notation at the moment) belonging to this algebra. For an arbitrary element B of this algebra we introduce
$S_{B}\left(A_{1}, \ldots, A_{n}\right)=A_{1} A_{2} B A_{1}^{-1} A_{2}^{-1}\left(A_{1}-A_{2}\right)+\left(A_{1}-A_{n-1}\right) A_{n} B A_{n}^{-1}+\operatorname{cycle}(1, \ldots, n)$,
Because of commutativity of the set $A_{1}, \ldots, A_{n}, A_{1}^{-1}, \ldots, A_{n}^{-1}$ and associativity of the algebra we get that

$$
S_{B}\left(A_{1}, A_{2}\right)=0, \quad S_{B}\left(A_{1}, A_{2}, A_{3} . A_{4}\right)=S_{B}\left(A_{1}, A_{2}, A_{3}\right)+S_{B}\left(A_{1}, A_{3}, A_{4}\right),
$$

and so on for larger n. Now, assuming that associative algebra has unity and A_{i}^{-1} is inverse of A_{i} we get that also

$$
\begin{aligned}
S_{B}\left(A_{1}, A_{2}, A_{3}\right) & \equiv A_{1} A_{2} B A_{1}^{-1} A_{2}^{-1}\left(A_{1}-A_{2}\right)+\left(A_{1}-A_{2}\right) A_{3} B A_{3}^{-1}+ \\
& +\operatorname{cycle}(1,2,3)=0
\end{aligned}
$$

again for any set of commuting elements A_{1}, A_{2}, A_{3} and any element B. Then all $S_{B}\left(A_{1}, \ldots, A_{n}\right)$ with $n \geq 3$ also equal to zero consequently.

Let us denote

$$
B(m) \equiv B\left(m_{1}, m_{2}, m_{3}\right)=\left(\prod_{n=1}^{3}\left(A-a_{n}\right)^{m_{n}}\right) B\left(\prod_{n=1}^{3}\left(A-a_{n}\right)^{m_{n}}\right)^{-1}
$$

and let

$$
\begin{aligned}
& B^{(1)}(m)=B\left(m_{1}+1, m_{2}, m_{3}\right), \quad B^{(2)}(m)=B\left(m_{1}, m_{2}+1, m_{3}\right), \quad \ldots, \\
& B_{i}(m)=B^{(i)}(m)-B(m)
\end{aligned}
$$

Then the identity means that function $B(m)$ obeys difference equation

$$
B^{(12)}\left(A_{1}-A_{2}\right)+\left(A_{1}-A_{2}\right) B^{(3)}+\operatorname{cycle}(1,2,3)=0
$$

Let B operator in $V \otimes W, A$ operator in V, and a_{1}, a_{2}, a_{3} be commuting operators in W. Choosing

$$
A_{i}=A \otimes I-I \otimes a_{i}, \quad i=1,2,3
$$

Then

$$
B^{(12)}\left(a_{1}-a_{2}\right)+\left(a_{1}-a_{2}\right) B^{(3)}+\operatorname{cycle}(1,2,3)=0
$$

or

$$
B_{12}\left(a_{1}-a_{2}\right)+\left[a_{1}-a_{2}, B_{3}\right]+\text { cycle }=0
$$

Let we have (infinite) matrix $\mathcal{F}=\left\{\mathcal{F}_{m, n}\right\}_{m, n \in \mathbb{Z}}$. Any such matrix can be written in the form $\mathcal{F}=\sum_{n \in \mathbb{Z}} f_{n} \mathcal{T}^{n}$, where f_{n} are diagonal matrices $f_{n}=$ $\operatorname{diag}\left\{\mathcal{F}_{m, m+n}\right\}_{m \in \mathbb{Z}}$ and \mathcal{T} is operator of shift: $\mathcal{T}_{l . m}=\delta_{l+1, m}$. For any diagonal matrix $f=\operatorname{diag}\left\{f_{m}\right\}$ we have that $\left(\mathcal{T} f \mathcal{T}^{-1}\right)_{l m}=f_{m-1} \delta_{l m}$. Product of two matrices can be written in the form $\mathcal{F} \mathcal{G}=\sum_{n} f_{n}\left(\sum_{m} \mathcal{T}^{n-m} g_{m} \mathcal{T}^{m-n}\right) T^{n}$.
Let us perform "shifted" Fourier transform: $F\left(\zeta, \zeta^{\prime}\right)=\sum_{m, m^{\prime} \in \mathbb{Z}} \zeta^{\prime m^{\prime}-m} \zeta^{-m} \mathcal{F}_{m, m^{\prime}}$, where $|\zeta|,\left|\zeta^{\prime}\right|=1$. Or $F\left(\zeta, \zeta^{\prime}\right)=\sum_{n}\left(\sum_{m} \zeta^{-m}\left(f_{n}\right)_{m}\right) \zeta^{\prime n}$. Next we formally continue this kernels in the complex domain with respect to ζ^{\prime} :

$$
F\left(\zeta, \zeta^{\prime}\right) \longrightarrow F(\zeta ; z), \quad z, \zeta \in \mathbb{C}, \quad|\zeta|=1
$$

Below we realize elements of the associative algebra as such functions (distributions) with composition law

$$
(F G)(\zeta ; z)=\oint_{\left|\zeta^{\prime}\right|=1} \frac{d \zeta^{\prime}}{2 \pi i \zeta^{\prime}} F\left(\zeta \bar{\zeta}^{\prime} ; z \zeta^{\prime}\right) G\left(\zeta^{\prime} ; z\right)
$$

that in the matrix case is equivalent to the standard product of matrices.

For the unity matrix I we get

$$
I(\zeta ; z)=\delta_{c}(\zeta)
$$

and for the shift operator \mathcal{T} :

$$
T(\zeta ; z)=z \delta_{c}(\zeta)
$$

If $F(\zeta ; z)=f(z) \delta_{c}(\zeta)$ then similarity transformation of an arbitrary operator G has kernel

$$
\left(F G F^{-1}\right)(\zeta ; z)=\frac{f(\zeta z)}{f(z)} G(\zeta ; z) .
$$

All standard operations on matrices can be reformulated in terms of their kernels. Say, kernel of Hermitian conjugation of F equals:

$$
F^{\dagger}(\zeta ; z)=\overline{F(\bar{\zeta} ; \zeta / \bar{z})} .
$$

But there appears a new operation:

$$
(\bar{\partial} F)(\zeta ; z)=\frac{\partial F(\zeta, z)}{\partial \bar{z}},
$$

that is essential for the following construction.

Function $B(m)$ can be considered as function of two "space" variables (say, m_{1} and m_{2}) and one "time" variable (correspondingly, m_{3}) with evolution given by the Hirota equation. We realize elements A and $B(m)$ of an associative algebra as extended operators in the above sense with kernels $A(\zeta ; z)$ and $B(\zeta ; z)$, that are operators in the auxiliary space W. We impose condition that

$$
B\left(m_{1}, m_{2}, m_{3} ; \zeta_{1}, \zeta_{2} ; z\right)=\zeta_{1}^{m_{1}} \zeta_{2}^{m_{2}} B\left(m_{3} ; \zeta_{1}, \zeta_{2} ; z\right)
$$

This gives two conditions:
$B^{(1)}=\left(A-a_{1}\right) B\left(A-a_{1}\right)^{-1}=T_{1} B T_{1}^{-1}, \quad B^{(2)}=\left(A-a_{2}\right) B\left(A-a_{2}\right)^{-1}=T_{2} B T_{2}^{-1}$
This means that we can choose $A=T_{1}+a_{1}$, i.e. $A(\zeta ; z)=\left(z+a_{1}\right) \delta_{c}(\zeta)$. Now the second condition takes the form

$$
B^{(2)}=T_{2} B T_{2}^{-1}=\left(T_{1}+a_{12}\right) B\left(T_{1}+a_{12}\right)^{-1}, \quad a_{12}=a_{1}-a_{2} .
$$

i.e., there exists operator $L_{0}=T_{2}-T_{1}+\left(a_{2}-a_{1}\right) I$ such that $L_{0} B=T_{2} B T_{2}^{-1} L_{0}$, or $T_{2} B\left(T_{1}+a_{12}\right)=\left(T_{1}+a_{12}\right) B T_{2}$. As well $B^{(3)}=\left(T_{1}+a_{13}\right) B\left(T_{1}+a_{13}\right)^{-1}$. If $B(\zeta ; z)$ is a matrix in the space W, and a_{i} are diagonal matrices in this space, then above relation means that $\left[z\left(\zeta_{1}-\zeta_{2}\right)+a_{12, i}-\zeta_{2} a_{12, j}\right] B_{i j}(\zeta ; z)=0$, or that there exists representation $B_{i j}(\zeta ; z)=b_{i j}(\zeta) \delta\left(z\left(\zeta_{1}-\zeta_{2}\right)+a_{12, i}-\zeta_{2} a_{12, j}\right)$.

We introduce operator ν with kernel $\nu(\zeta ; z)=\nu\left(\zeta ; z_{1}\right)$ as solution of the following d-bar problem:

$$
\bar{\partial} \nu=\nu B, \quad \lim _{z \rightarrow \infty} \nu(\zeta ; z)=\delta_{c}(\zeta)
$$

and assume its unique solvability. The m-dependence is introduced by $\bar{\partial} \nu(m)=$ $\nu(m) B(m)$. In particular, $\bar{\partial}_{1} \nu^{(1)}=\nu^{(1)} T_{1} B T_{1}^{-1}$, or $\bar{\partial}_{1}\left(\nu^{(1)} T_{1}\right)=\left(\nu^{(1)} T_{1}\right) B$. Let us specify the $1 / z_{1}$-term of expansion of $\nu(\zeta, z)$ at infinity:

$$
\nu(m, \zeta ; z)=\delta_{c}(\zeta)+\frac{u(m, \zeta)}{z_{1}}+\ldots
$$

Then $\lim _{z_{1} \rightarrow \infty} \nu^{(1) T_{1}}=T_{1}+u^{(1)}$. Then $\nu^{(1)}=T_{1} \nu T_{1}^{-1}$ and $u^{(1)}=T_{1} u T_{1}^{-1}$ (the r.h.s. is independent of z). In analogy: $\bar{\partial}_{1}\left(\nu^{(2)}\left(T_{1}+a_{12}\right)\right)=\left(\nu^{(1)}\left(T_{1}+a_{12}\right)\right) B$ and then

$$
\nu^{(2)}\left(T_{1}+a_{12}\right)=\left(T_{1}+a_{12}+u^{(2)}-u^{(1)}\right) \nu .
$$

In the same way we derive $\nu^{(3)}\left(T_{1}+a_{13}\right)=\left(T_{1}+a_{13}+u^{(3)}-u^{(1)}\right) \nu$.

We introduce:

$$
\chi\left(m_{1}, m_{2}, m_{3}, z\right)=\oint_{\left|\zeta_{1}\right|=1} \frac{d \zeta_{1} \zeta_{1}^{m_{1}-1}}{2 \pi i} \oint_{\left|\zeta_{2}\right|=1} \frac{d \zeta_{2} \zeta_{2}^{m_{2}-1}}{2 \pi i} \nu\left(m_{3}, \zeta ; z\right)
$$

and $\varphi(m, z)=\chi(m, z) E(m, z)$, where $E(m, z)=z^{m_{1}}\left(z+a_{12}\right)^{m_{2}}\left(z+a_{13}\right)^{m_{3}}$. Then from above we get:

$$
\begin{aligned}
& \varphi^{(2)}=\varphi^{(1)}+\left(u^{(2)}-u^{(1)}+a_{12}\right) \varphi \\
& \varphi^{(3)}=\varphi^{(2)}+\left(u^{(3)}-u^{(2)}+a_{23}\right) \varphi \\
& \varphi^{(1)}=\varphi^{(3)}+\left(u^{(1)}-u^{(3)}+a_{31}\right) \varphi
\end{aligned}
$$

so the Lax pair is any two of these equations. Compatibility condition gives:

$$
u^{(12)}\left(u^{(2)}-u^{(1)}+a_{12}\right)+a_{12} u^{(3)}+\text { cycle }=0
$$

that is Hirota difference equation in noncommutative case. It is obvious nonlinearization of the original identity

$$
B^{(12)} a_{12}+a_{12} B^{(3)}+\text { cycle }=0
$$

Let us denote

$$
v(m)=u(m)-m_{1} a_{1}-m_{2} a_{2}-m_{3} a_{3}
$$

then all a_{i} are excluded from the equation and Lax pair:

$$
\begin{aligned}
& \varphi^{(2)}=\varphi^{(1)}+\left(v^{(2)}-v^{(1)}\right) \varphi \\
& \varphi^{(3)}=\varphi^{(2)}+\left(v^{(3)}-v^{(2)}\right) \varphi \\
& \varphi^{(1)}=\varphi^{(3)}+\left(v^{(1)}-v^{(3)}\right) \varphi
\end{aligned}
$$

and

$$
v^{(12)}\left(v^{(2)}-v^{(1)}\right)+\operatorname{cycle}(1,2,3)=0
$$

while condition on asymptotics is essential $(u(m)$ is decaying $)$.

Limiting cases. If we substitute $a_{k} \rightarrow x a_{k}$, where x is c-number, we get

$$
B^{(k)}=a_{k}\left[B-\frac{1}{x} B_{t_{k}}\right] a_{k}^{-1}+\ldots, \quad x \rightarrow \infty
$$

where $\partial_{t_{k}}=\left[A a_{k}^{-1}, \cdot\right]$.
Limit $a_{3} \rightarrow \infty$. Let $k=3$. Then $1 / x$ term gives identity

$$
\begin{aligned}
B^{(12)} a_{12} & +a_{3}\left(B^{(2)}-B^{(1)}\right) t_{3}+a_{2} B^{(1)}-a_{1} B^{(2)}+ \\
& +a_{3} B^{(2)} a_{3}^{-1} a_{2}-a_{3} B^{(1)} a_{3}^{-1} a_{1}+a_{12} a_{3} B a_{3}^{-1}=0 .
\end{aligned}
$$

Thus,

$$
B^{(1)}=T_{1} B T_{1}^{-1}, \quad B^{(2)}=\left(T_{1}+a_{12}\right) B\left(T_{1}+a_{12}\right)^{-1}, \quad B_{t_{3}}=\left[\left(T_{1}+a_{1}\right) a_{3}^{-1}, B\right],
$$

so that $\bar{\partial}\left(\nu_{t_{3}}+\nu\left(T_{1}+a_{1}\right) a_{3}^{-1}\right)=\left(\nu_{t_{3}}+\nu\left(T_{1}+a_{1}\right) a_{3}^{-1}\right) B$. Thus again taking asymptotic into account we derive: $\nu_{t_{3}}+\nu\left(T_{1}+a_{1}\right) a_{3}^{-1}=a_{3}^{-1}\left(T_{1}+a_{3} u a_{3}^{-1}-u^{(1)}+\right.$ $\left.a_{1}\right) \nu$. Finally for $w\left(m_{1}, m_{2}, t_{3}\right)=u\left(m_{1}, m_{2}, t_{3}\right)-m_{1} a_{1}-m_{2} a_{2}$ we get Lax pair and evolution equation

$$
\begin{aligned}
& \psi_{t_{3}}=\psi^{(1)}-w_{1} \psi \\
& \psi^{(2)}=\psi^{(1)}+\left(w_{2}-w_{1}\right) \psi \\
& \left(w_{2}-w_{1}\right)_{t_{3}}+w_{12}\left(w_{2}-w_{1}\right)+\left[w_{1}, w_{2}\right]=0
\end{aligned}
$$

Limit $a_{2} \rightarrow \infty$. The identity takes the form:

$$
\begin{aligned}
\left(a_{2} B a_{2}^{-1}\right. & \left.-a_{3} B a_{3}^{-1}\right)^{(1)} a_{1}+\left(a_{2} B_{t_{2}}-a_{3} B_{t_{3}}\right)^{(1)}- \\
& -a_{2} a_{3} B_{t_{2}} a_{3}^{-1}+a_{3} a_{2} B_{t_{3}} a_{2}^{-1}-a_{1} a_{2} B a_{2}^{-1}+a_{1} a_{3} B a_{3}^{-1}=0
\end{aligned}
$$

that is antisymmetric with respect to indexes 2 and 3 . Now we have

$$
B^{(1)}=T_{1} B T_{1}^{-1}, \quad B_{t_{2}}=\left[\left(T_{1}+a_{1}\right) a_{2}^{-1}, B\right], \quad B_{t_{3}}=\left[\left(T_{1}+a_{1}\right) a_{3}^{-1}, B\right],
$$

Substitution: $v\left(m_{1}, t_{2}, t_{3}\right)=u\left(m_{1}, t_{2}, t_{3}\right)-m_{1} a$, Lax pair

$$
\begin{aligned}
& \alpha \psi_{t_{2}}=\psi^{(1)}+\left[\alpha w \alpha^{-1}-w^{(1)}\right] \psi, \\
& \alpha^{-1} \psi_{t_{3}}=\psi^{(1)}+\left[\alpha^{-1} w \alpha-w^{(1)}\right] \psi,
\end{aligned}
$$

and equation:

$$
\left(w \alpha-\alpha w^{(1)}\right)_{t_{2}}-\left(w \alpha^{-1}-\alpha^{-1} w^{(1)}\right)_{t_{3}}+\left[w \alpha-\alpha w^{(1)}, w \alpha^{-1}-\alpha^{-1} w^{(1)}\right]=0 .
$$

where a and α are constant, mutually commuting matrices.

Limit $a_{1} \rightarrow \infty$. Limiting identity reads as

$$
a_{1} \partial_{t_{1}}\left(a_{2} B a_{2}^{-1}-a_{3} B a_{3}^{-1}\right)+\text { cycle }=0 .
$$

we get that the Lax pair is any two equations of the system

$$
\begin{aligned}
& a_{1} \varphi_{t_{1}}=a_{2} \varphi_{t_{2}}+\left(a_{1} u a_{1}^{-1}-a_{2} u a_{2}^{-1}\right) \varphi, \\
& a_{2} \varphi_{t_{2}}=a_{3} \varphi_{t_{3}}+\left(a_{2} u a_{2}^{-1}-a_{3} u a_{3}^{-1}\right) \varphi, \\
& a_{3} \varphi_{t_{3}}=a_{1} \varphi_{t_{1}}+\left(a_{3} u a_{3}^{-1}-a_{1} u a_{1}^{-1}\right) \varphi,
\end{aligned}
$$

and equation of compatibility is

$$
a_{1}\left(a_{3} u a_{3}^{-1}-a_{2} u a_{2}^{-1}\right)_{t_{1}}+a_{2} a_{3} u a_{2}^{-1} a_{3}^{-1}\left(a_{3} u a_{3}^{-1}-a_{2} u a_{2}^{-1}\right)+\operatorname{cycle}(1,2,3)=0 .
$$

Limits of equal a_{i}. We write $a_{j}=a_{i}+x b_{i j}$, where $b_{i j}$ is some operator (commuting with all a_{k}) and x is a parameter, $x \rightarrow 0$. Then

$$
\left(A-a_{j}\right) B\left(A-a_{j}\right)^{-1} \rightarrow\left(A-a_{i}\right)\left(B-x\left[b_{i j}\left(A-a_{i}\right)^{-1}, B\right]+o(x)\right)\left(A-a_{i}\right)^{-1},
$$

that means that we can introduce, say, $t_{i j}$ by means of $\partial_{t_{i j}} B=\left[b_{i j}\left(A-a_{i}\right)^{-1}, B\right]$. Then

$$
B^{(j)} \rightarrow B^{(i)}-x B_{t_{i j}}^{(i)}+o(x) .
$$

Limit $a_{3} \rightarrow a_{1}$. Identity in the first order on x gives

$$
B_{t_{3}}^{(12)} a_{12}-a_{12} B_{t_{3}}^{(1)}-\left(B^{(12)}-B^{(11)}\right) b_{3}+b_{3}\left(B^{(2)}-B^{(1)}\right)=0,
$$

where

$$
B^{(1)}=T_{1} B T_{1}^{-1}, \quad B^{(2)}=\left(T_{1}+a_{12}\right) B\left(T_{1}+a_{12}\right)^{-1}, \quad B_{t_{3}}=\left[b_{3} T_{1}^{-1}, B\right] .
$$

Introducing $v\left(m_{1}, m_{2}, t_{3}\right)=u\left(m_{1}, m_{2}, t_{3}\right)-a_{1} m_{1}-a_{2} m_{2}+b_{3} t_{3}$ we get finally

$$
\begin{aligned}
& \varphi^{(2)}=\varphi^{(1)}+\left(v_{2}-v_{1}\right) \varphi, \\
& \varphi_{t_{3}}=v_{t_{3}} \varphi^{(-1)}
\end{aligned}
$$

and equation:

$$
\left(v^{(2)}-v^{(1)}\right)^{(1)} v_{t_{3}}^{(1)}-v_{t_{3}}^{(12)}\left(v^{(2)}-v^{(1)}\right)=0
$$

Limit $a_{2} \rightarrow a_{1}$. We set now $a_{2}=a_{1}+x b_{2}$ and consider limit $x \rightarrow 0$. Identity takes the form

$$
\begin{gathered}
\left(B^{(1)} b_{3}-b_{3} B\right)_{t_{2}}=\left(B^{(1)} b_{2}-b_{2} B\right)_{t_{3}}, \\
B\left(m_{1}, t_{2}, t_{3}\right)=T_{1}^{m_{1}} e^{\left(t_{2} b_{2}+t_{3} b_{3}\right) T_{1}^{-1}} B T_{1}^{-m_{1}} e^{-\left(t_{2} b_{2}+t_{3} b_{3}\right) T_{1}^{-1}},
\end{gathered}
$$

We introduce $v\left(m_{1}, t_{2}, t_{3}\right)=u\left(m_{1}, t_{2}, t_{3}\right)-a_{1} m_{1}+b_{2} t_{2}+b_{3} t_{3}$, Lax pair and equation:

$$
\begin{aligned}
& \varphi_{t_{2}}=v_{t_{2}} \varphi^{(-1)}, \\
& \varphi_{t_{3}}=v_{t_{3}} \varphi^{(-1)} \\
& v_{t_{2}}^{(1)} v_{t_{3}}=v_{t_{3}}^{(1)} v_{t_{2}} .
\end{aligned}
$$

Limit $a_{3} \rightarrow \infty$ and $a_{2} \rightarrow a_{1}$. Noncummutative Toda chain. Identity:

$$
\begin{aligned}
B^{(1)} b_{2} & +a_{3} B_{t_{2} t_{3}}-b_{2} B-a_{1} B_{t_{2}}+a_{3} B_{t_{2}} a_{3}^{-1} a_{1}- \\
& -a_{3} B a_{3}^{-1} b_{2}+b_{2} a_{3} B^{(-1)} a_{3}^{-1}=0 .
\end{aligned}
$$

Correspondingly,

$$
B^{(1)}=T_{1} B T_{1}^{-1}, \quad B_{t_{2}}=\left[b_{2} T_{1}^{-1}, B\right], \quad B_{t_{3}}=\left[\left(T_{1}+a_{1}\right) a_{3}^{-1}, B\right] .
$$

Lax pair and equation:

$$
\begin{aligned}
& \psi_{t_{2}}=w_{t_{2}} \psi^{(-1)} \\
& \psi_{t_{3}}=\psi^{(1)}-w_{1} \psi \\
& w_{t_{2} t_{3}}+w_{t_{2}} w_{-1}+w_{1} w_{t_{2}}=0,
\end{aligned}
$$

where asymptotically $w\left(m_{1}, t_{2}, t_{3}\right) \rightarrow-m_{1} a_{1} a_{3}^{-1}+b_{2} a_{3}^{-1} t_{2}$. In the commutative case $w_{t_{2}}=b_{2} a_{3}^{-1} e^{\phi_{-1}}$, and $\phi_{t_{2} t_{3}}=a_{1} a_{3}^{-1}\left(e^{-\phi_{1}}-e^{\phi_{-1}}\right)$.

