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Nucleation of electronic vortices, their flash sweeping,  
and the structure of the single remnant vortex in the junction 

Graphical abstract 

STM view of a CDW and of  
amplitude soliton, C. Brun 



Microscopics of local and instantaneous electronic states in CDWs . 
BCS-like Peierls-Fröhlich model for the CDW. 
Exact static solutions – solitons of multi-electronic models.  
Adiabatic generalization to dynamic processes – instantons.  
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Justification of the mean-field BCS, and for co-observation of electrons 
and solitons: Small phonon frequency: experimentally ωph <0.1Δ  

Incommensurate CDW :  Acos(Qx+φ)   Q=2Kf 
Complex order parameter :  Δ(x,t)~ Aexp(iφ) 
Electronic states  Ψ= Ψ+exp(iKfx) + Ψ-exp(-iKfx)  



John Bardeen’s Grand Unification: 
…… 
1940’s    - transistor  
1950’s   - Superconductivity 
1976 – 30/01/1991- - Charge Density Waves 

Common features of incommensurate CDWs and the superconductors: 
 

Ocdw =Acos(2KFx+ φ)  complex order parameters Ocdw,sc ~ A exp[i]  
 

hence vortices  dislocations, phase slips  phase solitons 
 

Similar microscopic theories: Peierls-Frohlich vs BSC 
Pair-breaking gaps 2 - hence tunneling, FFLO  solitonic lattices  
 

Tighter links at D=1: Spinons as amplitude solitons 
Phases cdw , sc are in conjugation: [i, ∂xj]~d(x) 
 

2 becomes the common spin gap; broken pair becomes 2 free spinons 



Distribution of potentials:  
values in colours, equipotential lines in black and currents as arrows.  
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Yurii Latyshev technology of mesa-structures 

slit 

Junction with N=20-30 atomic layers. 
Voltage drop is made by the normal current. 
The problem is never static, at least it is stationary. 



Direct observation of solitons and their arrays in tunneling on NbSe3 

peak 2 for inter-
gap  
creation of e-h 
pairs absolute 

threshold  
at low Vt≈0.2 

creation of solitons at ≈2/3 : 
Es=2/p ! 

oscillating fine 
structure  All features scale with the gap (T) ! 

Y. Latyshev, P. Monceau, A. Orlov, S.B., et al, PRLs 2005 and 2006 
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Main puzzles:  1. What is the low threshold? 
2. Why the voltage is not multiplied by N~20-30 - number of layers in the junction 
- It seems to be concentrated at just one elementary interval – DISLOCATION CORE 
In similar devices for superconductors the peak  appears at V=2 N 



Fine structure is not a noise !   
It is : sequential entering into  the junction area 
of dislocation lines = CDW vortices = 
 solitons‘ aggregates. 

Junction  reconstruction by entering of dislocations 
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Dislocation in CDW versus vortex in SC 
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Equivalence of actions of  Ey and Hz  upon the order parameters. 
Reverse effect of order parameters upon the fields are opposite: 
CDW – transverse electric field Ey is screened only via dislocations. 
 SC - magnetic field enters via vortices. 
Unlike  H≈cnst in SC, E in CDW is always self-consistent 
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  Ginzburg-Landau – like model 
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Only extrinsic carriers n are taken explicitly. 
Intrinsic ones, in the gap region, are hidden  
in the CDW amplitude A. 
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Near the vortex core 
∂ , hence A 0 



Phase:  wider sample, higher V 

Amplitude 
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amplitude 

phase 

potential 

Strong drop of electric potential and 
the high current density are 
concentrated near the vortex core  
– location of tunneling processes. 



Many vortices appear temporarily in the course of the evolution. 
For that run, only one will be left. 

nucleations 

traces of A=0 

Unexpected result: long living traces of the amplitude reduction  

following fleshes of vortices.  



Amplitude A 

Real geometry: initial short time fast dynamics 
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Phase  

All these 5 flashes are the  
phase-slip processes 
serving to redistribute  
the CDW collective charge 

Intermediate configuration with  
many vortices originating both  
inside and outside of the junction. 

Finite configuration 
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Deadly problems with  the TDGL model for CDW 

Works well for a stationary state and as a tool to reach it.  
Takes explicitly the extrinsic carriers (not interacting with CDW). 

Restrictions:  

Intrinsic carriers have been integrated out, as always in a GL, 

they come into the model only via the order parameter amplitude A. 

Major problem:   
Violation of the local charge conservation for the condensate . 

In our case  A(x,y,t) : 
0
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nin, nex   concentrations of intrinsic and extrinsic free carriers 
 

F(A,nin,nex) static free energy, not additive any more 
Its minimum at  A≠0 is erased at nex above a critical value (vortec core) 

Local energy functional )exp(  iA
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 Non analytic in Ψ  
Both terms are not  
derivable perturbatively  
–  the chiral anomaly. 
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True equations are not analytic in Ψ: 

phase gradients are not multiplied by A2  
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approaching from the CDW phase as  ρc ~∆2 
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Possible simplifications and explitness    

Infinite conductivity: - a bridge to the naive GL eqs. 

LHS  resembles  the static effective charge 
nc=A2∂x/p   - identifying  ρc and  A2  
But instead:   ∂xnc= ρc ∂x

2 /p  
Never a closed expression for j 

screening of Ex   with a  
standard local screening  
length  l2=r0

2/ ρn 

Poisson eq. 
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Resembles GL with ρc as A2 but  

with no differentiation of the amplitude : 
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Collective current and density following the phase deformations  
are given by the total number of electrons independent on  
the temperature and the magnitude of the gap.  
Nonanalytic dependence on the amplitude requires new  
more complicated numerical studies. 

We still can run up to nucleation of vortices at  a surface. 
But then the program crashes and  
we cannot trace proliferation of vortices as before. 
A price for no explicit compensation of diverging ∂ by vanishing A2 



We have performed a program of modeling of stationary states and of their transient 
dynamic for the CDW in restricted geometries taking into account multiple fields in 
mutual nonlinear interactions: the complex order parameter Aexp(i ) of the CDW,  
the electric field, the density and the current of normal carriers.  

Vortices are formed in the junction when the voltage across, or the current through, 
exceed a threshold; the number of vortexes increases step-wise   
- in agreement with experiments.  

The vortex core concentrates the total voltage drop,  
working as a self-tuned microscopic  tunnelling junction,  
which might give rise to observed peaks of the inter-layer tunneling .  

The studied reconstruction in junctions of the CDW can be relevant to modern 
efforts of the field-effect transformations in strongly correlated material  
which also show a spontaneous symmetry breaking.  

The numeric procedure needs to be stabilized for the nonanalytic eqs. 

The problems of glide and climb should be better considered. 

Conclusion and perspective. 
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