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The Manakov-Santini system
The Manakov-Santini system � two-component integrable extension of the

dKP equation,

uxt = uyy + (uux)x + vxuxy − uxxvy ,

vxt = vyy + uvxx + vxvxy − vxxvy .

Lax pair

∂yΨ = ((p − vx)∂x − ux∂p)Ψ,

∂tΨ = ((p2 − vxp + u − vy )∂x − (uxp + uy )∂p)Ψ,

where p plays a role of a spectral variable. For v = 0 reduces to dKP

(Khohlov-Zabolotskaya equation)

uxt = uyy + (uux)x ,

reduction u = 0 gives the equation (Pavlov, Martinez Alonso and Shabat)

vxt = vyy + vxvxy − vxxvy .
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Application: Einstein-Weil structures

M. Dunajski, E.V. Ferapontov and B. Kruglikov, On the Einstein-Weyl and
conformal self-duality equations, arXiv:1406.0018v1
EW geometry on a three-dimensional manifold M3 consists of a conformal

structure [g ] and a symmetric connection D compatible with [g ] in the

sense that, for any g ∈ [g ],

Dg = ω ⊗ g

for some covector ω, and such that the trace-free part of the symmetrized

Ricci tensor of D vanishes. In coordinates, this gives

Dkgij = ωkgij , R(ij) = Λgij ,

where ω = ωkdx
k is a covector, R(ij) is the symmetrized Ricci tensor of D,

and Λ is some function. In fact one needs to specify g and ω only, then the

�rst set of equations uniquely de�nes D.
The Einstein-Weyl equations are integrable by twistor-theoretic methods.
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Theorem

There exists a local coordinate system (x , y , t) on M3 such that any
Lorentzian Einstein�Weyl structure is locally of the form

g = −(dy − vxdt)2 + 4(dx − (u − vy )dt)dt,

ω = −vxxdy + (4ux − 2vxy + vxvxx)dt,

where the functions u and v on M3 satisfy a coupled system of
second-order PDEs (MS system)

P(u) + u2x = 0, P(v) = 0,

where
P = ∂x∂t − ∂2y + (u − vy )∂x

2 + vx∂x∂y .
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Two-component extension of dispersionless d2DTL system
L.V. Bogdanov, JPA 43 (2010) 434008

(e−φ)tt = mtφxy −mxφty ,

mtte
−φ = mtymx −mxymt .

The Lax pair

∂xΨ =

(
(λ+

mx

mt
)∂t − λ(φt

mx

mt
− φx)∂λ

)
Ψ,

∂yΨ =

(
− 1

λ

e−φ

mt
∂t −

(e−φ)t
mt

∂λ

)
Ψ

For m = t the system reduces to the dispersionless 2DTL equation

(e−φ)tt = φxy ,

The reduction φ = 0 (Pavlov; Shabat and Martinez Alonso)

mtt = mtymx −mxymt .

Also gives generic Einstein-Weil structures, a symmetric complex version

(x , y → z , z̄) is probably suitable for Euclidian case.
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Di�erential geometry and the hierarchy. General scheme

Bogdanov and Konopelchenko, JPA 2013, Journal of Physics Conf. Series
2014
A pair of commuting holomorphic (in spectral variable) vector �elds can be

equivalently described in terms of holomorphic decomposable (Pl�uker) form

Ωm (m+2 variables). Commutativity is equivalent to gauge-invariant

closedness of the form, de�ned as existence of J(λ, x) such that

d(J Ωm) = 0.

In general, (gauge invariantly) closed Pl�uker form Ωm holomorphic with
respect to λ = x0 de�nes a hierarchy in terms of commuting vector �elds
holomorphic in λ (integrable distribution), the equations of the hierarchy
are given by the gauge-invariant closedness equations.
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For the Manakov-Santini system we consider decomposable 2-form with

polynomial coe�cients

Ω2 = dλ ∧ dx1 − a11dλ ∧ dx2 − a21dλ ∧ dx3 + a10dx1 ∧ dx2 +

+a20dx1 ∧ dx3 − (a11a20 − a10a21)dx2 ∧ dx3

a10 = u0(x), a11 = u1(x) + λ,

a20 = v0(x) + λv1(x), a21 = v2(x) + λv3(x) + λ2.

Denoting x = x1, y = x2, t = x3, u0 = ux , u1 = −vx , from gauge invariant

closedness equations one gets the Manakov-Santini system

uxt + uyy + u2x + (u − vy )uxx + vxuxy = 0,

vxt + vyy + vxvxy + (u − vy )vxx = 0.
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Reductions

1.The form Ω2 is closed in the standard sense - dKP (Hamiltonian vector

�elds). In general, the closedness leads to volume-preserving vector �elds.

2.Reduction Ω2 ∧ dλ = 0. In this case it is possible to consider Ω1 not

containing dλ, Ω2 = Ω1 ∧ dλ. Vector �elds do not contain a derivative

over spectral variable. Leeds to Pavlov system and Martinez Alonso -

Shabat universal hierarchy, for general Ωm - to HCR hierarchies.
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The MS hierarchy in terms of di�erential form
Considering more variables and higher order polynomials in the form Ω2, we

come to MS hierarchy.

General properties of the form Ω2:

1 Ω2 ∧ Ω2 = 0 (Decomposability for 2-forms, equivalent to Pl�ucker

relations)

2 ∃J : d(J Ω2) = 0 (gauge-invariant closedness)

For decomposable forms the second condition is equivalent to the set of

equations for the coe�cients of the form, coinciding with involutiveness

equations for the distribution de�ned by the form.

The form Ω2 possessing these two properties can be represented as

Ω2 = J−1dL ∧ dM,

J, L, M - some series in spectral variable. Polynomiality of coe�cients of

the form leads to the condition

(J−1dL ∧ dM)− = 0.
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For the case

Ω2 = dp ∧ dx + . . .

(p - spectral variable) Ω2 is represented as

Ω2 = {L,M}−1dL ∧ dM

Generating relation for MS hierarchy is

({L,M}−1dL ∧ dM)− = 0,

considered for the series of the form

L = p +
∞∑
n=1

un(t)p−n,

M = M0 + M1, M0 =
∞∑
n=0

tnL
n,

M1 =
∞∑
n=1

vn(t)L−n =
∞∑
n=1

ṽn(t)p−n,
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Lax-Sato equations of MS hierarchy

Generating relation implies Lax-Sato equations

∂

∂tn

(
L
M

)
=

((
LnLp
{L,M}

)
+

∂x −
(

LnLx
{L,M}

)
+

∂p

)(
L
M

)
,

Lax-Sato equations for the �rst two �ows of the hierarchy

∂y

(
L
M

)
= ((p − vx)∂x − ux∂p)

(
L
M

)
∂t

(
L
M

)
= ((p2 − vxp + u − vy )∂x − (uxp + uy )∂p)

(
L
M

)
where u = u1, v = v1, x = t0, y = t1, t = t2, correspond to the Lax pair

of the Manakov-Santini system
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Dressing scheme
Let us consider the form Ω2

Ω2 = {L,M}−1dL ∧ dM

Question

How to provide analyticity of the form Ω2? What kind of functions L, M in

the complex plane correspond to a polynomial form?

It is easy to see that Ω2 is invariant under di�eomorphism

(L,M)→ F(L,M)

Let L, M be holomorphic outside some curve in the complex plain, having a

discontinuity on it. If they satisfy a nonlinear vector Riemann-Hilbert

problem (nvRHp)

(L,M)in = F(L,M)out,

then the form Ω2 is holomorhic in all the complex plane.
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It is also possible to introduce nonanalyticity in some domain G ,

∂̄(L,M) = f(L,M),

it is easy to check that Ω2 is analytic in G .

Nonlinear vector Riemann-Hilbert and ∂̄ problems give a tool to construct

Ω2 with polynomial (holomorphic) coe�cients, generating commuting

vector �elds with polynomial coe�cients and a solution to MS hierarchy

The reduction to dKP hierarchy corresponds to area-preserving

di�eomorpism in nonlinear vector Riemann-Hilbert problem (respectively

divergence-free f in the ∂̄-problem), in this case the form

Ω̃2 = dL ∧ dM

is analytic and

{L,M} = 1
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Dunajski interpolating system
The condition used by Dunajski (JPA 2008) to reduce the Manakov-Santini

system to the interpolating system

αu = vx ,

The reduced MS system can be written as deformed dKP,

uxt = uyy + (uux)x + vxuxy − uxxvy ,

vx = αu,

it also implies a single equation for v ,

vxt = vyy + α−1vvxx + vxvxy − vxxvy .

The limit α→ 0 corresponds to dKP, α→∞ � to equation, introduced by

Pavlov, Martinez Alonso and Shabat

Dunajski interpolating system describes "a symmetry reduction of the

anti-self-dual Einstein equations in (2, 2) signature by a conformal Killing

vector whose selfdual derivative is null".
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A class of di�erential reductions of the MS hierarchy

The dynamics of the Poisson bracket J = {L,M}, J = 1 + vxp
−1 + . . . is

described by the nonhomogeneous equation

∂

∂tn
ln J = (An∂x − Bn∂p) ln J + ∂xAn − ∂pBn,

An =

(
LnLp
J

)
+

, Bn =

(
LnLx
J

)
+

,

An, Bn are polynomials in p. ln J + F (L,M) also satis�es these equations.

We de�ne a class of reductions of Manakov-Santini hierarchy by the

condition

(ln J − αLk)− = 0,

where α is a constant. Then ln J − αLk is a polynomial,

{L,M} = expα(Lk − Lk+).
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Characterization of the reduction

Proposition

The existence of a polynomial solution

f = −αpk +
i=k−2∑

0

fi (t)pi ,

(where the coe�cients fi don't contain constants, see below) of equations

∂

∂tn
f = (An∂x − Bn∂p) f + ∂xAn − ∂pBn,

is equivalent to the reduction condition

(ln J − αLk)− = 0,
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General k

(ln J − αLk)− = 0⇒ (ln J − αLk) = (ln J − αLk)+ = −α(Lk)+,

f = −α(Lk)+ is a solution of nonhomogeneous equation of the Proposition.

J = expα(Lk − (Lk+)) = expα(Lk−),

and Lax-Sato equations of reduced hierarchy read

∂

∂tn
L = (e−α(L

k−)LnLp)+∂xL− (e−α(L
k−)LnLx)+∂pL.

Generating relation takes the form(
e−αL

k
dL ∧ dM

)
−

= 0.

For the �rst �ow n = 1 we obtain a condition

∂y (αLk+) = ((p − vx)∂x − ux∂p)(αLk+) + vxx .

This condition de�nes a di�erential reduction of Manakov-Santini system.
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The case k = 0 (or α = 0) corresponds to Hamiltonian vector �elds.

Indeed, in this case J = 1, and from nonhomogeneous equations we have

∂xAn − ∂pBn = 0.

This is the case of the dKP hierarchy.

Proposition

The reduction with general k is `interpolating' between the dKP hierarchy
(α→ 0), and the Gelfand-Dikii reduction of the MS hierarchy of the order
k , Lk− = 0, for α→∞.

(directly follows from the de�nition of the reduction)

L.V. Bogdanov (L.D. Landau ITP RAS) Landau Days 2014 19 / 34



k = 1. Dunajski interpolating system
In the case k = 1

(ln J − αL)− = 0⇒ (ln J − αL) = (ln J − αL)+ = −αp,
J = expα(L− p).

Lax-Sato equations

∂

∂tn
L = (eα(p−L)LnLp)+∂xL− (eα(p−L)LnLx)+∂pL.

The generating relation for the reduced hierarchy reads(
eα(p−L)dL ∧ dM

)
−

= 0⇒
(
e−αLdL ∧ dM

)
−

= 0.

Di�erential reduction reads

αu = vx ,

which is exactly the condition used by Dunajski (JPA 2008) to reduce the

Manakov-Santini system to the interpolating system.
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The reduced MS system (equivalent to Dunajski interpolating system) can

be written as deformed dKP,

uxt = uyy + (uux)x + vxuxy − uxxvy ,

vx = αu,

it also implies a single equation for v ,

vxt = vyy + α−1vvxx + vxvxy − vxxvy .

The limit α→ 0 corresponds to dKP, α→∞ � to equation, introduced by

Pavlov.
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Di�erential reductions. Special cases

The case k = 2.

J = eα(L
2−)

Di�erential reduction for the MS system

2α(uy + vxux) = vxx

The case k = 3. Di�erential reduction

3α
(
∂y (uy + uxvx) + ∂x(uyvx + uxv

2
x + uux)

)
= vxxx .
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A pair of reductions with di�erent k � reduction to (1+1)
Reductions of interpolating system (i.e., the reduction with k = 1, together
with the reduction of some order k 6= 1 with a constant β).
For k = 2 we obtain a system

uy + vxux = (2β)−1vxx ,

vx = αu,

which implies a hydrodynamic type equation (Hopf type equation) for u,

uy + αuux =
α

2β
ux .

The system for k = 3 read

∂y (uy + uxvx) + ∂x(uyvx + uxv
2
x + uux) = 3β−1vxxx ,

vx = αu,

it implies an equation for u,

uyy + ∂x(2αuyu + α2uxu
2 + uux −

α

3β
ux) = 0,
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which can be rewritten as a system of hydrodynamic type for two functions

u, w ,

wy = (
α

3β
− α2u2 − u)ux − 2αuwx ,

uy = wx .

A system of equations of hydrodynamic type corresponding to the reduction

of interpolating system of arbitrary order k > 3 can be written explicitly.
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Two reductions of higher order

A simple example of a system de�ned by two reductions of higher order

(reductions of the order 2 and 3),

uy + vxux = (2α)−1vxx ,(
∂y (uy + uxvx) + ∂x(uyvx + uxv

2
x + uux)

)
= (3β)−1vxxx .

A system of hydrodynamic type for the functions u, w = vx ,

uy + wux = (2α)−1wx ,

wy =
2α

3β
wx − wwx − 2αuux .
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The characterization of reductions in terms of the dressing
data

A dressing scheme for the MS hierarchy

Lin = F1(Lout,Mout),

Min = F2(Lout,Mout),

Lin(p, t), Min(p, t) are analytic inside the unit circle, the functions

Lout(p, t), Mout(p, t) are analytic outside the unit circle with a prescribed

singulariry de�ned by the series.

The Riemann problem implies the analyticity of the di�erential form

Ω0 =
dL ∧ dM

{L,M}

and the generating relation for the hierarchy.
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Let G1(λ, µ), G2(λ, µ) de�ne an area-preserving di�eomorphism,

G ∈ SDi�(2), ∣∣∣∣D(G1,G2)

D(λ, µ)

∣∣∣∣ = 1.

Let us �x a pair of analytic functions f1(λ, µ), f2(λ, µ) (the reduction data)

and consider a problem

f1(Lin,Min) = G1(f1(Lout,Mout), f2(Lout,Mout)),

f2(Lin,Min) = G2(f1(Lout,Mout), f2(Lout,Mout)),

which de�nes a reduction of the MS hierarchy. In terms of the Riemann

problem for the MS hierarchy, which can be written in the form

(Lin,Min) = F(Lout,Mout),

the reduction condition for the dressing data reads

f ◦ F ◦ f−1 ∈ SDi�(2).
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In terms of equations of the MS hierarchy the reduction is characterized by

the condition

(df1(L,M) ∧ df2(L,M))out = (df1(L,M) ∧ df2(L,M))in,

thus the di�erential form

Ωred = df1(L,M) ∧ df2(L,M)

is analytic in the complex plane, and reduced hierarchy is de�ned by the

generating relation

(df1(L,M) ∧ df2(L,M))− = 0.

Taking

f1(L,M) = L,

f2(L,M) = e−αL
n
M,

we obtain the generating relation(
e−αL

k
dL ∧ dM

)
−

= 0,

coinciding with the generating relation for k-reduced MS hierarchy.
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Thus we come to the following conclusion:

Proposition

In terms of the dressing data for the Riemann problem, the class of
reductions (de�ned above) is characterized by the condition

f ◦ F ◦ f−1 ∈ SDi�(2),

where the components of f are de�ned as

f1(L,M) = L, f2(L,M) = e−αL
n
M,

For the interpolating equation we have f1 = L, f2 = e−αLM, and the

Riemann problem can be written in the form

Lin = G1(Lout, e
−αLoutMout),

Min = eαG1(Lout,e−αLoutMout)G2(Lout, e
−αLoutMout),

where G ∈ SDi�(2).
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Hamiltonian structure of interpolating reduction

Lax-Sato equations for the reduction with k = 1 (Dunajski interpolating

equation) can be written in Hamiltonian form, but with the modi�ed

Poisson bracket (in collab. with S.V. Manakov). Indeed,

{L,M} = expα(L− p)⇒ eαp{L, e−αLM} = 1,

that indicates that the dynamics is Hamiltonian with the bracket

{−,−}′ = eαp{−,−}. The �rst �ow of reduced hierarchy

∂yΨ = ((p − αu)∂x − ux∂p)Ψ,

can be written in Hamiltonian form

∂yΨ = eαp{H1,Ψ},
H1 = e−αp(u − α−1(p + α−1)).
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It is possible to prove that all the �ows of the reduced hierarchy are

Hamiltonian with the bracket {−,−}′ = eαp{−,−}, however, we don't

have an explicit formula for Hn.

For higher reductions, there is an anti-symmetric invariant, but the

corresponding 'bracket' doesn't satisfy the Jacobi identity.

L.V. Bogdanov (L.D. Landau ITP RAS) Landau Days 2014 31 / 34



Interpolating reduction for d2DTL case

Non-homogeneous linear equations

∂xΦ =

(
(λ+

mx

mt
)∂t − (φt

mx

mt
− φx)λ∂λ

)
Φ + β∂t

mx

mt
,

∂yΦ =

(
− 1

λ

e−φ

mt
∂t −

1

λ

(e−φ)t
mt

λ∂λ

)
Φ− β e

−φ

λ
∂t

1

mt
, (1)

the substitution of solution lnλ to both equations gives the same reduction

condition

eαφ = mt , α = −β−1,

This reduction makes it possible to rewrite the d2DTL system as one

equation for m,

mtt = (mt)
1
α (mtymx −mxymt), (∗)
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or in the form of deformed d2DTL equation,

(e−φ)tt = mtφxy −mxφty ,

mt = eαφ.

The limit α→ 0 gives the d2DTL equation, the limit α→∞ gives the

equation introduced by Pavlov; Shabat and Martinez Alonso.

Equation (∗) is connested with the generalization of a dispersionless (1 +

2)-dimensional Harry Dym equation, Blaszak (2002), and also with an

equation describing ASD vacuum metric with conformal symmetry,

Dunajski and Tod (1999)
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Hamiltonian structure of reduction, d2DTL case
(In collaboration with S.V.Manakov)

The Lax-Sato equations are Hamiltonian with the bracket

{f , g}′ = λα{f , g} = λα+1(fλgt − ftgλ).

{Λ,M} = λ−α exp(αΛ)⇒ {Λ, exp(−αΛ)M}′ = 1.

The Lax pair

∂xΨ =

(
(λ+

mx

mt
)∂t − λ(φt

mx

mt
− φx)∂λ

)
Ψ,

∂yΨ =

(
1

λ

e−φ

mt
∂t +

(e−φ)t
mt

∂λ

)
Ψ

with the reduction mt = eαφ can be written in Hamiltonian form

∂xΨ = {Hx ,Ψ}′, Hx = (1− α)−1λ1−α − α−1λ−αmx

mt
,

∂yΨ = {Hy ,Ψ}′, Hy = − 1

α + 1
λ−α−1m

− 1
α
−1

t .
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THANK YOU!
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