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What are colloids?
I Low limit size: when detailed knowledge of the internal

degrees of freedom is not needed: 1 nm ;
I Upper limit size: particles should behave due to Brownian

motion (Brownian displacement 〈h〉 in a gravity field g is ∝
a particle diameter σ) :

〈h〉 ' T
mg

, KB ≡ 1 ;
πgρσ4

6
= T

It gives σ ' 1 µm (for a brick, m = 1 kg, 〈h〉 ' 10−20cm).
I In time domain, time to move ∝ particle size

τ ' ησ3

T

yields for a 1 µm colloid in water τ ' 1 s (for a brick it is
about 107 years!).



Various colloidal suspensions:

Figure: colloidal suspensions

For deionized suspensions of charged particles, the long-range
order appears in extremely dilute dispersions, φ ' 0.005,
whereas for hard spheres it occurs at φ ' 0.5.



PNIPAM shell of the Particles

Figure: Temperature control of particle volume fraction.

PNIPAM has a volume transition in which the network in the
shell expelling water. Thus the effective volume φeff can be
adjusted through the temperature.



Phase Diagram of Hard Spheres

Figure: Phase Diagram of Hard Spheres.

I Other than φ control parameters: aspect ratio,
polydispersity but not the size of the sphere.

I φHCP ≡ π/
√

18.
I Delay prior to nucleation ∝ to polydispersity.



Note of caution: φRCP is ill-defined:
I Experimentally and numerically φRCP is in a window from

0.60 to 0.68.
I Close packed implies that the spheres are in contact with

one another with the highest possible coordination number
on average. But increasing the degree of coordination, and
thus, the bulk system density, comes at the expense of
disorder. Thus, ”random” and ”close packed” are at odds
with one another.

I Better defined notion is maximally random (or less
ordered) jammed (MRJ), where a particle is jammed if it
cannot be translated while fixing the positions of all of the
other particles in the system (this eliminates ”rattlers”,
particles without any contacts!).

I MRJ state to be the one that minimizes order parameter
(e.g., scalar crystalline and bond orientational) among all
jammed structures.



φRCP and average kissing number Z versus
aspect ratio
Clays are important examples of non-spherical particles.

Figure: prolate (circles), oblate (squares), biaxial (diamonds)
ellipsoids

Crystal close packing shows no such singular behavior and
almost independent of aspect ratio for small deviations from 1.
Isostatic system: Z = 2f (frictionless particles) and Z = f + 1
(strong friction). Number degrees of freedom f = 3 for spheres,
f = 5 for uniaxial ellipsoids and f = 6 for biaxial ellipsoids.



Why it is interesting?
Suspensions are scaled-up version of
atomic systems:

I A few names: Van der Waals, Einstein, Onsager, Debye....
I Colloidal dispersion with a particle concentration of about

1013 cm−3 has elastic constants of the order of about
10 dyn/cm2, whereas in atomic solids with atomic density
around 1022 cm−3, the elastic constants have a value
around 1012 dyn/cm2.

I Atomic or molecular systems require several Kilobars
pressure for observing structural phase transitions,
whereas for colloids it is about 10−5 bar .



I Hard sphere colloids are genuine soft
matter systems!

I The next step beyond the ideal gas is the
hard sphere suspension with entropy
driven phase transition, like in Bose gas.

I Liquid and crystal coexisting for volume
fractions between freezing φf = 0.49 and
melting φm = 0.545, and dynamic glass
transition at φg ' 0.56 − 0.58.



A few words on dynamics
I Deborah number De (Old Testament: ”The mountains

flowed before the Lord”):

De =
τin

τex

I Practical criteria: viscosity larger than 1013 Poise, or
observation time larger than 100 s. There is very little we
can do with to move up or down these criteria! Even then
ergodic statistical mechanics can be applied within each
individual component if τcomponent � tobs � τsystem

I In scattering experiments

τex ∝ 1
D(k)k2 ; τin ∝ σ2

D

and in the range kσ � 1, De � 1. However, nothing is
wrong and in this range one measures the short time limit
of the self-diffusion coefficient Ds.



Typical time scales
I Solvent relaxation time (solvent degrees of freedom relax

to an equilibrium distribution, constrained by a
non-equilibrium configuration of the much slower particles):
10−13 s − 10−12 s

I Longitudinal (sound waves) hydrodynamic time
τs ' σ/vs ∝ 10−12 s − 10−11 s.

I Shear viscous relaxation time

τη =
ρsσ

2

η
∝ 10−10 s − 10−8 s

I Brownian relaxation time

τB ' 2ρp

9ρs
τη

I For t � τB the velocities have relaxed and only the particle
positions remain as degrees of freedom relaxing by
diffusion

τI =
σ2

D0
∝ 10−3 s



Equation of States for 1D Tonks - Jepsen Liquid:
N rods with a distribution of lengths {li}, where 1 < i < N in a
line box of total length L.

I Rescaling of all lengths by a factor 1 + ε: li → (1 + ε)li , and
L → (1 + ε)L. Because excluded volume is irrelevant in this
transformation, only entropy of mixing, the reversible work
δWtot associated with this process δWtot = −ρT δL, where
ρ = N/L, and δL = εL.



The same expansion can be done in two
steps:

I (a) rod sizes are sequentially rescaled, one at a time
l1 → (1 + ε)l1, then l2 → (1 + ε)l2, and so on;

I (b) the box size is expanded L → (1 + ε)L.
I In a step (a) any rod that is expanded behaves as a

confined wall (”piston”), therefore the work needed to
rescale particle i is Pδli = Pεli . Consequently the work
needed to perform step (a) is δWa =

∑N
i=1 Pδli ≡ PδLp,

where δLp ≡ δLφ, and p stands for particles, and
φ ≡

∑

i li/L is particle volume fraction. Furthermore,
〈l〉 = φ/ρ.

I For a step (b) the work δWb = −PδL, and the total work
δWtot = δWa + δWb = PφδL−PδL. From the other hand by
its definition δWtot = −ρT δL, therefore the equation of state

P =
ρT

1 − φ



3d generalization
I For d=3 (equal size σ hard spheres) one still has

δWtot = δWa + δWb, with δWtot = −ρT δV and
δWb = −PδV .

I Each particle is surrounded by an excluded volume of
diameter 2σ where no other particle’s center of mass may
be found. Thus the work needed to expand σ into σ + δσ

δWσ→σ+δσ = ρTg(σ)δVsweep

where ρTg(σ) is an entropic (kinetic) force per unit area felt
by a given particle (g(r) gives probability to find a particle
at the distance r ) and δVsweep is the volume change of the
excluded volume sphere

δVsweep = 2d−1Sd(σ)
δσ

2



I Summing over all particles

δWa =
∑

i

δWσ → σ + δσ = ρTg(σ)2d−1δVp

where δVp = φδV .
I Combining everything together the equation of state

P
ρT

= 1 + 2d−1φg(σ)



Three byproducts:
I For 1d

g(l) =
1

1 − φ

I All virial coefficients for 1d Tonks and Jepsen liquid are
unity.

I For 3d the equation of state coincides with that derived by
Leibowitz (and he has calculated 5 virial coefficients).



Qualitative speculations
I Spherically symmetric pairwise potential

V (r) = Vsr (r) + Vlr (r), where

Vsr (r) = ∞ , r ≤ 1,

Vsr (r) = 0, r > 1 .

(σ ≡ 1).
I The long range part Vlr is a generalized Kac potential

(M.Kac studied a model with pure attractive long range
potential)

Vlr = −εaγ
3
a exp(−γar) + εrγ

3
r exp(−γr r)

Both the attractions and repulsions are long ranged,
γ−1

a , γ−1
r � 1, but the repulsions are longer γr ≤ γa � 1,

and the both are weak, εrγ
3
r , εaγ

3
a � T .



Typical potentials

Figure: Potential V (r) (supplemented by short range attraction)
versus interparticle separation.



I Short range part produces rather deep minimum, while
long range tails due to frustrating competition between
attractions and repulsions might yield to a minimum about
100 times smaller.

I Potential determines the phase behavior through its
integral over space, it is multiplied by a factor r 2 which
gives for r ' 10 the same factor 100. The fact is that there
are many more particles of separations between say 11
and 12 particle diameters than between 1 and 2 ( Similar
to weak crystallization spirit).



Second virial coefficient

B2 = −1
2

∫

d3r [exp(−V (r)/T ) − 1]

and for our potential

B2 =
2π

3
− 4π

(εa

T
− εr

T

)

under asymptotically (at γr , γa → 0) exact approximations
I εaγ

3
a , εrγ

3
r � T ;

I region of integration of Vlr is extended down to r = 0,
whereas the hard core actually cuts it off below r = 1.

I Introducing reduced energy ε ≡ εa/T and the ratio
α = εr/εa

B2 =
2π

3
− 4πε(1 − α)



I When no repulsion, i.e, α = 0 in the limit γ → 0 the free
energy is calculated exactly (Penrose, Leibowitz, Van
Kampen)

F
NT

=
FHS

NT
− 4περ

where ρ = N/V , and FHS (hard sphere part) is a function
only of density and it is convex up to fluid - solid transition.

I For α 6= 0 similarly (but even in the limit γa → 0
approximately !)

F
NT

=
FHS

NT
− 4πε(1 − α)ρ

and corresponding pressure

P
T

=
PHS

T
− 4πε(1 − α)ρ2



I For densities below 1-st order phase transition fluid to solid
(i.e., in a liquid state), PHS is a smooth monotonically
increasing function of density.

I If εa > εr , then α < 1 and long range tail contribution to P is
negative. When T decreases this term becomes more and
more negative (via ε ∝ 1/T ) until the fluid phase is
unstable separating into dilute and dense fluids.

I However if εr > εa, the pressure is convex at all
temperatures. Only one fluid phase! Another 1-st order
phase transition (liquid - solid) can occur.



Structure factor S(q) = 1 + ρh(q), where indirect correlation
function h(r) = g(r) − 1.

I Approximations are easier for direct correlation function
c(q) related to h(q) by Ornshtein - Zernike equation

h(q) =
c(q)

1 − ρc(q)

or

S(q) =
1

1 − ρc(q)

I S(q) must be positive and finite for all q. It diverges if
1 − ρc(q) = 0.

I For our potential (a steep short range repulsion plus a
weak tail) c(r) = csr (r) + clr (r), for r < 1, c(r) is dominated
by hard sphere interaction, whereas for r � 1 it is close to
−Vlr/T .



Then:
I cPY which is zero for r > 1, and

clr (q) =
8πε

[1 + (q/γa)2]2
− 8πεα

[1 + (q/γr )2]2

and

S(q) =
1

1 − ρ(cPY (q) + clr (q))



Bounded and positive definite interactions
I Potentials do not diverge at the origin and no attractions at

all: V (r) ≡ εf (r/σ), where V varies from ε at r = 0 to zero
at r → ∞. f (x) does not have to be analytic!

I Dimensionless temperature t ≡ T/ε, and density
φ = πρσ3/6 = πρ̄/6.

I The key idea is that at high density ρσ3 � 1 the average
interparticle distance a ' ρ−1/3 becomes vanishingly small
(� σ), i.e., the potential is extremely long range.

I In this limit and without short range excluded volume
interaction c(r) = −V (r)/T (since c(r) ∝ δ2F/δρ2).

I Thus

S(q) =
1

1 + ρ̄t−1f (q)



Since f (x) decays monotonically from unity at x = 0 to zero at
x → ∞ for its Fourier transform f (q) there are two possibilities

I It has a monotonic decay from the value f (q = 0) to zero at
q → ∞ (M -potentials);

I It has oscillating behavior at q → ∞, attaining necessary
negative values for certain range of q (O potentials).

I Let q∗ is the value of q at which f (q) attains its minimum
negative value. It implies a maximum of S(q) at q∗ and this
maximum becomes a singularity at the spinodal line

ρ̄t−1|f (q∗)| = 1

System must reach a crystalline state. If the Fourier
transform f (x) has negative component, then an increase
in temperature can be compensated by an increase in
density. Thus S(q∗) will have a divergence at all T .

Systems with O potentials freeze at all
temperatures!



Systems with M potentials:
I S(q) is a monotonic function of q at high densities, and

one can always find a temperature high enough, so that
mean field assumptions are granted and freezing is
impossible at such temperatures.

I That does not imply that such systems do not freeze at all.
One merely has to go to low enough temperature and
density, where interaction is much larger than T . Then the
system will display a hard sphere type of freezing.

I An upper freezing temperature tu must exist for M
potentials, implying that system must remelt at t < tu upon
increasing of the density.



PY exact solution
I In real space the OZ equation

h(x) = c(x) +

∫

d3yh(y)c(x − y)

The direct correlation unction tends to zero with increasing
x much more rapidly than the indirect correlation function.

I The PY closure equation

c(x) = (1 − exp(V (x)/T )) g(x)

For the PY closure c(x) vanishes exactly outside the range
of V (x).

I Qualitative basis is in representation of multi-particle
distribution function ns as one-particle density n(y) under
the imposition of suitable external potential

ns(y , x1, ....xs−1)

ns−1(x1, ...xs−1)
= n(y |U)

where U(x) = V (x , x1) + .... + V (x1, xs−1)



PY - continuation:
I To derive it we consider n(y |U) exp(U(y)/T ) as a

functional of n(y |U) as U is changed from 0 to its final
value. Performing Taylor expansion, taking U(y) = V (y , x),
and truncating the expansion at first order, after some
algebra, we end up with the PY closure relation:

I

c(x) = (1 − exp(V (x)/T )) g(x)

I In words: spatial correlations in ρ in two volume elements
have a direct and an indirect component. In the direct
component only ρ fluctuations in the two volume elements
are considered, whereas the fluctuations in all the
surrounding volume elements are kept fixed. The indirect
contribution is added when the fixation is released:

gtotal = c + gindirect



For auxiliary function τ(x) ≡ g(x) − c(x) for hard spheres

τ(r) = 1 + n
∫

r<σ
τ(r ′)d3r ′ − n

∫

r ′<σ ; |r−r ′|>σ
τ(r ′)τ(r − r ′)d3r ′

Wertheim, Baxter found τ(r) at r < σ (where it coincides with
c(r)), and then g(r) at r > σ, where it coincides with τ(r).

I Wertheim, Baxter solution:

−c(x) = α + βx + γx2 + δx3

I

α =
(1 + 2φ)2

(1 − φ)4 ; β = −6φ(1 + 0.5φ2)

(1 − φ)4

γ = 0 ; δ =
φ(1 + 2φ)2

2(1 − φ)4



Similar strategy for interacting hard spheres:

V (r) =

∣

∣

∣

∣

∣

∣

∞ , r < σ
Va(r) + Vr (r) , σ < r < b

0 , r > b

I To find τ(r) at r < σ, i.e., to solve Ornshtein-Zernike
equation with the PY closure relation:

τ(x) = 1+n
∫

d3y (e−βV (y)−1)τ(y)(e−βV (x−y)τ(x−y)−1) ,

I To find g(r) at r > b;
I To interpolate τ(r) from σ to b.



Interaction potentials:
I Depletion: Va(r) ≡ 0, for r > ba and for r ≤ ba:

Va(r) = V 0
a

(ba − r)2(2ba + r)
(ba − σ)2(2ba + σ)

I Yukawa (attraction or repulsion):

Vr = ±V 0
r

exp κ(σ − r)
r

where

V 0
r =

Q
ε(1 + κσ)2



Nature is on our side:
The function τ(r) is a smooth function for r < b, and
approaches to 0 at large r
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Unlike c(r)
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In Fourier space a jump at x ≡ (r/σ) = 1 corresponds to 1/q
behavior at q → ∞:

c(q) =
4π

q

∫

dxx sin(qx)c(x)



To get better convergence for b < x

τ(x) − 1 =
4π

8π3x

∫

dq q sin(qx)h(q) =

1
2π2x

∫

dq q sin(qx)
c(q)

1 − n c(q)
=

1
2π2x

∫

dq q sin(qx)

(

c(q) +
n c2(q)

1 − n c(q)

)

=

c(x) +
1

2π2x

∫

dq q sin(qx)
n c2(q)

1 − n c(q)
=

n
2π2x

∫

dq q sin(qx)
c2(q)

1 − n c(q)
.



I With this c(q) one can find τ(x) (or what is the same g(x)
for x > b

τ(x) =
ρ

2π2x

∫

dqq sin(qx)
c2(q)

1 − ρc(q)

I Pressure

P =
4πρT

6

(

σ3τ(σ) −
∫ b

σ
dr (exp(−V (r)/T ) − 1) ∂r (r3τ(r))

)

I Coordination number

N = 4π

∫ b

σ
drr2g(r)



Note of caution: Two ”routes” connecting P
and g(r)

I The virial route

P = ρT − ρ2

6

∫ ∞

0
r
dV
dr

g(r)4πr2dr

I The compressibility route

T
dρ

dP
= 1 + ρ

∫ ∞

0
h(r)4πr2dr

I It can be verified that B2 and B3 in the PY theory do not
depend on the route.

I VdW pressure holds at low densities

P =
T

(1/ρ) − σ



How to find τ(r)?
I For a weak potential (V < T ), τ(r) has almost the same

polynomial form as for HS. For a relatively short ranged
(but not small!) V > T , the modification of the HS ansatz is
essential only for relatively small r ' b − σ.

I This suggests the ansatz

τ(r) = c0 + c1r + c3r3 + τs(r)

with τs = c4/(x + c5)
2 growing at x → 0.

I Then the PY closure allows to calculate c(r), then g(r) for
r > b, and eventually the τ(r) is well defined for all r .



Illustrations how it works:
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Figure: HS with depletive attraction



Sticky HS
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HS with depletive attraction
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Sticky HS
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Sticky HS
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Square well potential
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Not everything is so unclouded!
I Increasing polymer concentration (e.g., up to 46 mg/ml)

we increase depletion potential up to Va0 ' 6T ;
I However, already for Va0 ' 3.7T , S(q → 0) becomes very

large, g(σ) ' 32 and N ' 3.55;
I This means that there are strong fluctuations as a

precursor of the two phase state, consisting of liquids with
different density;

I OZ equation with PY closure cannot describe this situation;
I It can be done by adding Debye-Bueche function

I(q) → F (q)

(

S(q) +
Dl3

(1 + (ql)2)2

)

where l is a characteristic cluster size, D describes the
normalized contribution from the clusters to the scattering
intensity, and volume fraction φ in the aggregates is larger
than in the bulk liquid.



Aggregations:
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Figure: Without Debye correction.



The same but with Debye corrections
included
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Without Debye contribution from the clusters
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The same but with Debye corrections
included
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Spinodal line
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Figure: Line of limiting stability of liquid phase: blue - b = 1.13, red -
b = 1.25



Optional slide: Where to go further on:
I Close to the freezing transition liquids are more complex

than suggested by the pair correlation function!
I Structural shape factor ζ = C2/4pS, relied on a Voronoi

analysis, C is the circumference, and S is the surface area
of the Voronoi cell of each particle (Voronoi cell of a particle
a consists of all points closer to a than to any other sites).

I ζ reflects the structural changes close to freezing in more
detail than the changes in g(r).


