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� Conducting polymers 1978-2008. 
electrical conduction and optical activity.

� Modern requests for ferroelectric applications and materials. 

� Existing structural ferroelectricity in a saturated polymer.

� Ferroelectric  Mott-Hubbard phase and  charge 
disproportionation in quasi 1d organic conductors. 

� Expectations of the electronic ferroelectricity in 
conjugated modified polyenes.
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Ferroelectricity is a rising  demand in  

fundamental and applied solid state physics. 

�Active gate materials and electric RAM in microelectronics,

�Capacitors in portable WiFi communicators,

�Electro-Optical-Acoustic modulators,

�Electro-Mechanical actuators

�Transducers and Sensors in medical imaging.

Request for plasticity – polymer-ceramic composites 

but weakening responses – effective ε~10. 

Plastic ferrroelectrics are necessary  in medical imaging – low weight :

compatibility of acoustic impedances with biological tissues. 



�One ferroelectric  saturated polymer does exist - Po ly(vinylidene flouride) 
PVDF :
• ferroelectric and pyroelectric , 
• efficient piezoelectric if poled – quenched under a high voltage. 

� Light, flexible, non-toxic, cheap to produce
� Helps in very costly applications:
• ultrasonic transducers
• hydrophone probes, sonar equipment
• unique as long stretching actuator. 

Ferroelectrics are available mostly in the inorganic wor ld.
Can we have organic only, particularly polymer only ferro electric ?

PVDF
substitutes
polyethylene –
saturated polymer

but: εεεε~10 – modest efficiency (compare to εεεε~500 – 15000 for inorganic FE)

Can we go wider, diversely, and may be better with conjugated polymers?
Can we mobilize their fast pi-electrons to make a better job than common ions? 



« In the beginning was the Word, …
and without him was not anything made that was made »

But was “organic supercondictivity” the only promised land?
Not quite : some of the profet’s visions actually imply a spontaneous 
electric polarization, hence they are FERROELECTRIC.

Drawing from the PRB 1964
It is a pyroelectric if N≠H

Later popular drawing (Sci. Am.)
It must be a ferroelectric if R≠H
also an illustration of 
conjugated polymer

R=
phenyl
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Conducting polymers: today’s applications

LED display and microelectronic chip made by 
Phillips Research Lab

Tsukuba, LED TV.

Ferroelectricity in conjugated polymers?

�Where does the confidence come? 

�What may be a scale of effects ?

Proved by  success in organic conducting crystals.



conterion
= dopant X

Molecule 
TMTTF
or TMTSF

Arrows show displacements of ions X.
They follow and stabilize the electronic 
charge disproportionation. 
Collinear arrows – ferroelectricity.
Alternating arrows – anti-ferroelectricity.
A single stack is polarized in any case.

Major polarization comes from redistribution of electronic density,

hence amplification of polarizability ε by a factor of (ωp/∆)2~102

giving even a background ε ~103

Built-in dimerization  of bonds - counterions against each second pair of molecules )

Spontaneous symmetry breaking – displacements of counterions,
nonequivqlence of sites



1D Mott-Hubburd state. 1 electron per site i.e. the half filled band.
Spin degrees of freedom are split-off and gapless. 
Charge degrees of freedom can be gapful: 

chiral phase   ϕ=ϕ(x,t) for fermions near +/-KF: 
Gap rigin: Umklapp scattering (Luther and Emery,Dzyaloshinskii & Larkin).

- +

- +

Uexp[i 2ϕ] : amplitude of the Umklapp scattering of 
electrons (-KF,- KF) � (+KF,+KF) is allowed here. 
Momentum deficit 4KF is just compensated by the 
reciprocal  lattice period.   Contineous chiral symmetry 
lifting: arbitrary translations are forbidden on the lattice.

Amplitude U may have a phase α !

H~ (h/4πγ) [vρ (∂xϕ )2 + (∂tϕ )2 /vρ ] - Ucos (2ϕ-2α)
• Hamiltonian degeneracy ϕ�ϕ+π originates current carriers:

±π solitons with charges ±e, energy ∆
(= holon = 4KF CDW discommensuration = Wigner crystal vacancy )

]2/exp[~ ϕi±Ψ±



COMBINED MOTT - HUBBARD STATE
2 types of dimerization ⇒

2 interfering sources for two-fold commensurability
⇒ 2 contributions to the Umklapp interaction:

Site dimerization  : HU
s=-Us cos 2ϕ (spontaneous)

Bond dimerization : HU
b=-Ub  sin 2ϕ (build-in)

At presence of both site and bond types
HU= -Uscos 2ϕ -Ubsin 2ϕ = -Ucos (2ϕ-2α) 

Us≠0 � α ≠0 � phase ϕ = “mean displacement of all electrons”
shifts from ϕ =0 to ϕ = α, hence the gigantic FE polarization.

From a single stack to a crystal:      Macroscopic FerroElectric
ground state if the same α is chosen for all stacks, 
Anti-FE state if the sign of α alternates - both cases are observed 



Spontaneous  Us can change  sign between different FE domains.
Then electronic system must also adjust its ground state from α to -α.

Hence the domain boundary  Us↔-Us requires for the
phase soliton of the increment δ =-2α
which will concentrate the non integer charge q=-2α/π per chain.

φ =- αααα
φφφφ= αααα

alpha- solitons are walls between 
domains of opposite FE polarizations 

They are on-chain conducting particles only above TFE.
Below TFE they aggregate into macroscopic walls. 

They do not conduct any more, 
but determine the FE depolarization dynamics.
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ReO4

SbF6

AsF6

PF6

Real part of dielectric constant of (TMTTF) 2X salts  

a second order phase transition described 
by the Curie law

A
εεεε’ =      ----------

|||| T- TCO ||||

P.Monceau F. N and S.B. Phys. Rev. Lett. 86 (2001) 

4081
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Frequency dependence of imaginary part of  ε

Comparison of the ε′′(f) curves at 
two temperatures near Tc:
above - 105K and below - 97K. 

T- dependence of relaxation  time for the 
main peak: 

Critical slowing down near Tc, 
Activation law at low T – friction of FE 
domain walls by  charge carriers

Low frequency shoulder - only at T<Tc :
pinning of FE domain walls ?

Dow we see the motion of FE solitons ? Yes at T<T c

Landau-
Khalatnikov
critical relaxation
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Second harmonic generation 
λ(ω)=1400nm

K. Yamamoto et al. JPSJ, 77 (2008) 074709

Problem of identification of the
frozen polarization:
through anomalous optical activity
- lack of inversion summetry

3
2

2

8
EEW χ

π
ε += E3 may exist only in case of inversion symmetry breaking
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Instructions of the FE design: Combined symmetry breaking.

Realization: conjugated polymers of the (AB)x type: 

modified polyacetylene (CRCR’)x

�Lift  the inversion symmetry, remove the mirror symmetry, 

do  not leave a glide plane. 

�Keep the double degeneracy to get a ferroelectric.



SOILITONS WITH NONINTEGER VARIABLE CHARGES:
Orthogonal mixing of static and dynamic mass generations. 
Realisation: modified polyacetylene (CRCR′′′′)x

Theories for solitons with variable charges: S.B. & N.K. 1981, M.Rice

22
inex ∆+∆=∆

Joint effect of extrinsic ∆ex and intrinsic ∆in contributions to dimerization gap ∆.
∆ex comes from the build-in site dimerization – inequivalence of sites A and B.
∆in - from spontaneous dimerization of bonds ∆in=∆b - generic Peierls effect.
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Nontrivial chiral angle 0<2θ<π of the soliton trajectory corresponds to the 
noninteger electric charge q= eθ/π
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Diatomic (C 2RR`) chain –
(AB)x polymer
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Special experimental advantage:  
ac electric field alternates polarization 
by commuting the bond ordering patterns, 
i.e.  moving charged solitons. 
Through solitons’ spectral features 
it opens a special tool of 
electro-optical interference.

∆in WILL NOT be spontaneously 

generated – it is a threshold effect -

if ∆ex already exceeds the wanted 

optimal Peierls gap.

Chemistry precaution: make a small 

difference of ligands R and R’
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The necessary polymer does exist : 

since 1999 from Kyoto-Osaka-Utah team.

By today – complete optical characterization, 

indirect  proof for spontaneous bonds dimerization 

via spectral signatures of solitons.

“Accidental” origin of the success 

to get the Peierls effect of bonds dimerization:

weak difference or radicals 

– only by a distant side group.

Small site dimerisation gap provoke to add the 

bond dimerisation gap.

Still a missing link : no idea was to check for the Ferroelectricity:
To be tried ? and discovered !
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Optical results by
Z.V. Vardeny group:
Soliton feature,
Absorption,
Luminescence,
Dynamics

Proof for spontaneous dimerization through the existence of solitons

Not a polaron, 
but spin 
soliton ?
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LESSONS and PERSPECTIVES

� ππππ-conjugated systems can support the electronic ferroelectricity.

� Effect is registered and interpreted in two families of 
organic crystalline conductors (quasi 1D and quasi 2D).

� Mechanism is well understood as combined collective effects of 
Mott (S.B. 2001) or Peierls (N.K.&S.B. 1981) types. 

� An example of a must_be_ferroelectric polyene has been already studied 
(Vardeny et al). 

� The design is symmetrically defined and can be previewed. 
Cases of low temperature phases should not be overlooked.

� Solitons  will serve duties of re-polarization walls.
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WARNINGS

1. Ferroelectric transition in organic conductors was weakly observed, 
but missed to be identified, for 15 years before its clarification.

2. Success was due to a synthesis of methods coming from 
a. experimental techniques for sliding Charge Density Waves, 
b. materials from organic metals,
c. ideas from theory of conjugated polymers.

3. Theory guides only towards a single chain polarization.
The bulk arrangement may be also anti-ferroelectric –
still interesting while less spectacular. Empirical reason for optimism: 
majority of (TMTTF)2X cases are ferroelectrics.

4. …….

…………………..

13. High-Tc superconductivity was discovered leading by a “false idea”
of looking for a vicinity of ferroelectric oxide conductors.


