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Two different kinds of rogue waves in weakly crossing sea states

Victor P. Ruban

Formation of giant waves in sea states with two spectral maxima, centered at close wave vectors
k0 ± ∆k/2 in the Fourier plane, is numerically simulated using the fully nonlinear model for long-
crested water waves [V. P. Ruban, Phys. Rev. E 71, 055303(R) (2005)]. Depending on an angle θ
between the vectors k0 and ∆k, which determines a typical orientation of interference stripes in the
physical plane, rogue waves arise having different spatial structure. If θ . arctan(1/

√
2), then typical

giant waves are relatively long fragments of essentially two-dimensional (2D) ridges, separated by wide
valleys and consisting of alternating oblique crests and troughs. At nearly perpendicular k0 and ∆k,
the interference minima develop to coherent structures similar to the dark solitons of the nonlinear
Schrodinger equation, and a 2D freak wave looks much as a piece of a 1D freak wave, bounded in
the transversal direction by two such dark solitons.

V. P. Ruban, Phys. Rev. E. 79, 065304(R) (2009).



I. Preliminary qualitative remarks

Weakly nonlinear deep-water gravity waves: 2D NLSE for wave envelope

Y (x1, x2, t) ≈ Re [A(x1, x2, t) exp(ik0x1 − iω0t)] , (1)
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Simple 1D-reductions

A = k−1
0 Ψ(ξ, τ ) (3)

ξ = k0[(x1 − Vgrt) cos θ + x2 sin θ], τ = ω0t, Vgr = (ω0/2k0). (4)
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Depending on the sign of the dispersion coefficient D(θ) = [(1/2) cos2 θ−2 sin2 θ],
the dynamics is quite different. For example, in the focusing case (when D > 0),
the nonlinearity can become saturated with the so-called (bright) solitons,

Ψbs =
s

cosh
[

(s/
√
D)(ξ − ξ0)

] exp(−iτs2/4 + iφ0), (6)

where s is a wave steepness, and ξ0, φ0 are arbitrary constants. These weakly non-
linear solutions describe infinitely long wave ridges consisting of alternating oblique
crests and troughs. In a more accurate model for fully nonlinear long-crested deep-
water waves, as discussed below, these solutions exist for a long time, before quali-
tative modifications, in a range 0 < s . 0.24...0.27 (depending on θ). In particular,
if θ = 0, in the highly nonlinear case s = 0.20...0.27 we have here the so called 1D
GIANT BREATHERS (Dyachenko, Zakharov).

In the defocusing case (when D < 0), the so-called dark solitons are possible,

Ψds = s tanh
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]

exp(−iτs2/2 + iφ0), (7)

which separate two domains of opposite amplitude.



In view of the above, it is clear that since the effective dispersion coefficient D(θ)
changes the sign at θ∗ = arctan(1/

√
2), in the full 2D dynamics of random wave

fields there should be two substantially different regimes, one regime at θ . θ∗ and
another at θ close to π/2. This hypothesis is confirmed in general by numerical
experiments reported here.



II. More accurate model

1. Conformal variables in 3D

Z = X + iY = z(u, q, t) = u + (i− Ĥ)Y (u, q, t) (8)

ĤY (u, q, t) =
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(1 − iĤ) [2(δK/δZ)Zu + (δK/δψ)ψu]
)

|Zu|2
. (11)



2. Approximate kinetic energy functional

K ≈ K̃ = −1

2
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Ê(Z − u)
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Ψ ≡ (1 + iĤ)ψ
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3. Variational derivatives
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III. Numerical experiments

1. Example of evolution of a perturbed giant breather in 2D.
2. Example of evolution of a perturbed high-amplitude oblique soliton into a zigzag

structure
3-4. Two small sets of typical numerical experiments designated as A1-A4 and B1-

B3. Within each set, at t = 0 the normal Fourier modes of the wave field were taken
in the form akm(0) = cF (k,m) exp(iγkm), with a positive function F (k,m) having
two nearly Gaussian maxima at k0 ± ∆k/2, and with quasi-random initial phases
γkm, different for A and for B. In each experiment a choice of the coefficient c gave
different values of the total energy EA1, EA2, EA3, EA4 and EB1, EB2, EB3. In set
A we took k0 = (40.0,−2.5) and ∆k = (7.0, 2.0), so a case θ < θ∗ was simulated,
while in set B it was a crossing sea state with θ = π/2: k0 ± ∆k/2 = (39.5,±3.5).
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Figure 1: (a)-(b): Evolution of a perturbed giant breather in 2D; (c) Maximum and minimum elevation

of the giant breather vs. time.
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Figure 2: (a)-(b): Evolution of a perturbed high-amplitude oblique soliton into a zigzag structure; (c)

Maximum and minimum elevation of the oblique soliton vs. time.
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Figure 3: Maximum elevation of the free surface vs. time in the numerical experiments A1-A4.



Figure 4: Experiment A3: the two big waves are at x ≈ 1.6 km, q ≈ [3.7 · · · 3.9] km, and at x ≈ 1.5

km, q ≈ [0.1 · · · 0.3] km.
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Figure 5: Maximum elevation of the free surface in the numerical experiments B1-B3.



Figure 6: Experiment B2: the rogue wave is at x ≈ 1.2 km, q ≈ [1.0 · · · 1.3] km.
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Figure 7: (a) profiles of the freak wave from Fig.6; (b) 8 s later: “a hole in the sea”; (c) 16 s later: the

big wave has risen again.


