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Introduction

The mirror instability was found by Vedenov and
Sagdeev with the help of kinetic description (1957 but
published in 1958) using the expansion ω/ωci � 1. The
growth rate:

γ = |kz|vT‖i
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where β‖ = 8πp‖/B
2 and β⊥ = 8πp⊥/B2, ion distribution

function f(v‖, v⊥) is assumed bi-Maxwellian and
electrons cold.
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Introduction

According to measurements in the Earth magnetosheath
(Lucek et.al., (2001)) holes have the form elongated in the
mean magnetic field direction with maxima of density and
pressure. A typical depth of such magnetic holes is about
20% from the mean magnetic field value, sometimes the
depth can achieve 50 %. The characteristic width of such
structures is about 2-4 ion Larmor radii with aspect ratio
about 7-10. These structures are often associated with
development of the mirror instability.
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Introduction

The applicability condition of MI γ/kz � vT‖i
means that

ε =
2β⊥

2 + β⊥ − β‖

(
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)
� 1.
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Main equations for the mirror modes in the drift approximation

The drift kinetic equation for ions:

∂f

∂t
+ v‖b · ∇f − µb · ∇B

∂f

∂v‖
= 0.

where µ = v2
⊥/2B is the adiabatic invariant, b = B/B

(electric drift and parallel electric field are not essential).
Both pressures p‖ and p⊥ are given by the integrals:

p‖ = mB
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Main equations for the mirror modes in the drift approximation

The equation for the balance of forces (transverse
components):

0 = Π
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where the first term in the r.h.s. describes action of magnetic
and perpendicular pressures, the second term is responsible
for magnetic lines elasticity, Πik = δik − bibk. Here the inertia
term is omitted. It is small in both linear and nonlinear
regimes.
Two Maxwell equations:

∇ · B = 0, ∇× E = −1

c

∂B

∂t
.

Mirror instability: From quasi-linear diffusion to coherent structures – p.



Behavior of the growth rate near threshold in the bi-Maxwellian case

Near threshold the instability is saturated due to the FLR
effect :

γ = |kz|
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In this case k⊥ ∝ √
ε, kz/ k⊥ ∝ √

ε and γ ∼ ε2.
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Quadratic nonlinearities

Assuming

B̃z
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= ε
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the multi-scale expansion yields
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where Here K̂z = −Ĥ ∂
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and Ĥf(Z) = 1
π
V P

∫∞
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dZ ′ is
the Hilbert transform.

Mirror instability: From quasi-linear diffusion to coherent structures – p.



The 3D model

The obtained equation possesses one remarkable property:
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∂T
= −K̂z

δF

δU

where
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F has the meaning of the free energy or the Lyapunov
functional.
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The 3D model

This quantity can not grow but only decrease in time:
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=
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dF/dT vanishes on the stationary localized solutions:
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Such solutions are possible at ε < 0 but unstable; above
threshold, ε > 0, they are absent.
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The 3D model

Thus, the derivative dF/dT is strictly negative and
respectively F decreases monotonically in time, becoming
more negative. For small amplitudes such regime provides by
the first term. At the nonlinear regime negativeness of F

provides by the last term, i.e.,
∫

U3d3R. The latter means that
at the nonlinear stage

∫
U3d3R < 0

that corresponds to the formation of magnetic holes.
This process has blow-up behavior. It is possible to show that
that F |t=0, 0 is the sufficient condition for collapse.
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Quasi-linear effects

The growth rate with account of FLR effect for arbitrary
distribution function
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Quasi-linear effects

Here pB = B2
0
/8π is the magnetic pressure, Ω the ion

gyrofrequency,

χ = 1 +
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Quasi-linear effects

The asymptotic model for arbitrary distribution function reads
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Quasilinear equation

Near the instability threshold quasi-linear diffusion for ions
mainly takes place along magnetic field (Shapiro &
Shevchenko, 1964):
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Quasi-linear (2+1) diffusion
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Quasi-linear (2+1) diffusion
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Particle-in-cell and ’Vlasov’ (2+1) simulations

Figure 4:
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Blowing-up formation of 1D humps

Figure 5:
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Conclusion

Quasi-linear evolution of the mirror instability was
investigated by direct integration of the corresponding
diffusion equation. The resulting flattening of the
distribution function is in good agreement with the early
time results of Vlasov-Maxwell simulations.

A dynamical model was presented that reproduces the
formation of mirror structures observed at later times. It
provides a possible mechanism for the formation of
magnetic humps in a mirror unstable plasma, as revealed
by satellite measurements.
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