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We analyze kinematic dynamo effect in a conducting fluid where stationary shear flow is
accompanied by relatively weak random smooth velocity fluctuations. Then ....

I. INTRODUCTION

Dynamo implies magnetic field generation in a conducting fluid where a random flow is present.
We consider the case where the magnetic field is growing from weak fluctuations and examine an
initial stage of the magnetic field evolution when its amplitude is small, so that one can neglect
feedback from the magnetic field to the flow. This stage is called kinematic one, and the magnetic
field is passive at the stage. We assume that the random flow is statistically homogeneous in space
and time, and analyze an evolution of magnetic fluctuations in this case.
We consider an evolution of a random in space magnetic field with characteristic scale much less

than the velocity correlation length. Then the magnetic field is increasing at the kinematic stage,
the increase can be characterized by single-point moments of the magnetic field induction B that
grow exponentially in time:

〈B2n(t)〉 ∝ exp (γnt) . (1)

Here angular brackets mean averaging over space and γn are increments, that are subjects of our
investigation.
The increments γn are determined by the random flow, they are related to the Lyapunov exponent

λ that is average logarithmic diverging rate of close fluid particles. The quantity λ−1 plays the role
of the Lagrangian correlation time of the random flow. Therefore we are interested in times t� λ−1

when the laws (1) are well observed.
The flow is assumed to be composed of a steady shear flow and a random component. Examples!
d = 3 versus d = 2 and other dimensions.
Elastic turbulence
Magneto-diffusion
∇v = 0

II. BASIC RELATIONS

The magnetic field evolution in a conducting medium is governed by the equation

∂tB = (B ·∇)v − (v ·∇)B + κ∇2B. (2)

Here v is the flow velocity and κ is the magneto-diffusion coefficient, inversely proportional to the
electrical conductivity of the medium. We consider the case where the magnetic field is weak and,
therefore, κ is a constant independent of the magnetic field. The flow is assumed to be incompressible,
∇v = 0.
We investigate the magnetic field in a random (turbulent) flow assuming that the velocity statistics

is homogeneous in space and time. The magnetic fluctuations are examined on scales much less than
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the velocity correlation length. Then the velocity field can be treated as smooth that is the velocity
can be represented as a Taylor series. First terms of the expansion in a vicinity of a fluid particle are

vj = Vj(t) + Σji(t)ri, (3)

where V (t) is the fluid particle velocity and r is the radius-vector in the reference system with the
origin in the fluid particle. Here Σji is the velocity gradient matrix, due to the incompressibility
condition its trace is equal to zero.
The flow is assumed to be composed of a steady shear flow and a random component. Then the

matrix of the velocity gradients Σji is written as

Σji(t) = sδj1δi2 + σji(t), (4)

where the axis one is directed along the shear velocity that varies along the axis two, and s is the shear
coefficient. The random component σji is zero in average and should be, consequently, characterized
in terms of its pair correlation function, 〈σji(t1)σmn(t2)〉 that is a function of t = t1 − t2 due to the
statistics homogeneity in time. We assume that the steady shear constituent of the flow is stronger
than the random one, that is

s�
∫
dt 〈σij(t)σmn(0)〉, (5)

for all components of the matrix σ̂.
Let us pass to the reference system attached to our marked fluid particle and make Fourier

transform for the magnetic field. Then the equation (2) leads to

∂tBi(t,k) = ΣijBj(t,k) + Σnjkn
∂

∂kj
Bi(t,k)− κk2Bi(t,k). (6)

The equation can be explicitly solved in terms of the evolution matrix Ŵ , that is the following
chronologically ordered exponent

Ŵ (t) = T exp

[∫ t

0

dt′ Σ̂(t′)

]
. (7)

The solution is written as

B(t,k) = Ŵ (t)B
(
Ŵ Tk

)
× (8)

× exp

[
−κ
∫ t

0

dt′ k · Ŵ (t){Ŵ (t′)}−1{Ŵ T (t′)}−1Ŵ T (t)k

]
,

where B (k) is Fourier-transform of the initial magnetic induction, existing at t = 0, and the subscript
T labels transposed matrices.

III. PROPERTIES OF THE EVOLUTION MATRIX

Before passing to the moments of the magnetic field induction we overlook properties of the
evolution matrix (7). First of all, determinant of Ŵ is equal to unity since the matrix Σ̂ is traceless
(due to incompressibility). Next, eigen values of Ŵ are obviously positive.
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We are interested in properties of the evolution matrix Ŵ on times t larger than the inverse
Lyapunov exponent, where Ŵ possesses some universal properties. They can be conveniently
expressed in terms of the Gaussian decomposition

Ŵ (t) = T̂L∆̂T̂R, (9)

where T̂L and T̂R are triangle matrices and ∆̂ is diagonal matrix:

T̂L =

 1 χ χ1

0 1 χ2

0 0 1

 , T̂R =

 1 0 0
ζ1 1 0
ζ2 ζ3 1

 , (10)

∆̂ =

 e−ρ1 0 0
0 eρ 0
0 0 eρ1−ρ

 . (11)

The structure of the diagonal matrix ∆̂ is determined by the condition det∆̂ = 1, following from
detŴ = 1.
Substituting the decomposition (9) into the equation ∂tŴ = Σ̂Ŵ , following from Eq. (7), one

obtains

T̂−1
L Σ̂T̂L = T̂−1

L ∂tT̂L + ∂t∆̂∆̂−1 + ∆̂∂tT̂RT̂
−1
R ∆̂−1. (12)

Based on the relation one concludes that at t � λ−1 the elements of the matrix ∆̂ behave
exponentially in time, the T̂R is frozen (being remained of order unity), whereas elements of the
matrix T̂L fluctuate, possessing a homogeneous in time statistics. The statistics of the parameters ρ
and ρ1 is determined by the central limit theorem since they are integrals of the random functions
with homogeneous in time statistics.
The time derivative ∂tρ can be estimated as λ. If λ� s then a hierarchy χ� χ1 � χ2 is correct

as one can check from Eq. (12). Therefore in the main approximation in λ/s the only component
σ21 ≡ σ is relevant and the system of equations (12) is reduced to

χ̇ = s− χ2σ, ρ̇ = χσ, ρ1 = −ρ. (13)

The short correlated case is examined in Appendix A.

IV. RANDOM INITIAL CONDITIONS

We consider the case where the initial magnetic field is distributed randomly in space with
homogenous in space statistics and have a single correlation length l. Then the induction pair
correlation function can be written as

〈Bi(k)Bj(k′)〉 = δ(k + k′)
(
δijk

2 − kikj
)
f(l2k2), (14)

where f is a function decaying fast as its argument tends to infinity. In our assumptions, a
characteristic wave number of B should be much larger than the inverse velocity correlation length.
Therefore l should be much smaller than the velocity correlation length.
При больших t характерные ρ � 1. В этом пределе из выражения (8) легко получается

оценка:

B2(t) ∼ l

rd
B2

0e
ρ, (15)
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где rd– диффузионная длина. Будем вычислять моменты 〈B2n(t)〉 для n � 1. В этом случае
ведущий вклад в инкремент γn, see Eq. (1), определяется перевальной траекторией σ(t) = const,
так что из уравнений (13) следует:

ρ = t
√
sσ.

Для определения γn нужно знать вероятность p(σ) такой реализации σ(t) = const. Для времен t,
много больших времени корреляции случайной переменной σ(t), применимо обобщение закона
больших чисел (следующее, фактически, из аддитивности энтропии):

p(σ) ∼ exp (−tΓ(σ)) , (16)

где Γ(σ) – так называемая функция Крамера. Усреднение по σ выполняется также перевальным
образом, и результат может быть представлен как

γn = n
√
sσn − Γ(σn), (17)

где σn является решением перевального уравнения:

Γ′(σn) =
n

2

√
s

σn
. (18)

Если время корреляции случайного процесса σ(t) достаточно мало (заметно меньше, чем
λ−1), то функция Крамера является просто параболой:

Γ(σ) = σ2/D, (19)

и мы приходим к явному выражению для асимптотических при n � 1 значений искомых
инкрементов:

γn = Cλn4/3, C = 3× 44/3. (20)

V. CONCLUSION

So, ...

Приложение A

Here we consider the random constituent of the flow that is short correlated in time. As we noted,
at the condition λ� s the only relevant component of the matrix of the random velocity gradients
is σ ≡ σ21. In the short correlated case it can be treated as white noise that is

〈σ(t1)σ(t2)〉 = Dδ(t1 − t2), (A1)

where the factor D characterizes strength of the noise. The condition λ� s is equivalent to D � s.
Introducing the variable x = χ−1, one obtains from Eqs. (13,A1) the following Fokker-Plank equation
for the probability distribution function P (x):

∂tP = ∂x(sx
2P ) + (D/2)∂2

xP. (A2)

A stationary solution of the equation is

P ∝ exp

(
−2sx2

3D

)
, (A3)
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that leads to

〈x〉 = 〈χ−1〉 =
Γ(2/3)

Γ(1/3)

(
3D

2s

)1/3

. (A4)

And then we obtain from Eq. (13)

λ = 〈χσ〉 = 〈sx〉 =
Γ(2/3)

Γ(1/3)

(
3Ds2

2

)1/3

. (A5)
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