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We consider 3D-systems of the form

n∑
j=1

aij(u)uj,t +
n∑

j=1

bij(u)uj,y +
n∑

j=1

cij(u)uj,x = 0,

where i = 1, ..., l. Here l ≥ n,

u = (u1, ..., un)t.

Integer k = l − n is called the defect of the system.

Equations of the form

A1Ztt +A2Zxt +A3Zyt +A4Zyy +A5Zxy +A6Zxx = 0

where Ai = Ai(Zx, Zy, Zt), correspond to n = 3, l = 4.

Equations

F (Ztt, Zxt, Zyt, Zyy, Zxy, Zxx) = 0

correspond to n = 5, l = 8.



Part 1. Gibbons-Tsarev type systems

The GT-systems play a crucial role in the approach to

integrability based on the hydrodynamic reductions.

Definition. A compatible system of PDEs of the form

∂ipj = f(pi, pj, u1, ..., un) ∂iu1 , i 6= j, i, j = 1, ..., N,

∂iuk = gk(pi, u1, ..., un) ∂iu1, k = 2, ..., n, i = 1, ..., N,

∂i∂ju1 = h(pi, pj, u1, ..., un) ∂iu1∂ju1, i 6= j, i, j = 1, ..., N

is called n-fields GT-system. Here p1, ..., pN , u1, ..., un

are functions of r1, ..., rN , N ≥ 3 and ∂i = ∂
∂
ri

.

Definition. Two GT-systems are called equivalent if

they are related by a transformation of the form

pi → λ(pi, u1, ..., un), i = 1, ..., N, (1)

uk → µk(u1, ..., un), k = 1, ..., n. (2)



Example 1. The system

∂ipj = 0, ∂iuk = gk(pi)∂iu1, ∂i∂ju1 = 0 (3)

is a n-field GT-system for any n,N and any functions

gk(x).

Example 2. Let P (x) = a3x
3+a2x

2+a1x+a0. Then

∂iju =
K2(pi, pj)u

2 +K1(pi, pj)u+K0(pi, pj)

P (u)(pi − pj)2
∂iu∂ju,

∂ipj =
P (pj)(u− pi)
P (u)(pi − pj)

∂iu, i, j = 1, ..., N, i 6= j,

where

K2(pi, pj) = 2a3(pi − pj)2,

K1(pi, pj) = −a3(p2
i pj+pip

2
j )+a2(p2

i +p2
j−4pipj)−a1(pi+pj)−2a0,

K0(pi, pj) = 2a3p
2
i p

2
j+a2(p2

i pj+pip
2
j )+a1(p2

i +p2
j )+a0(pi+pj)

is an one-field GT-system.



Using transformations of the form

u→
au+ b

cu+ d
, pi →

api + b

cpi + d
,

one can put the polynomial P to one of the canonical

forms: P (x) = x(x− 1), P (x) = x, or P (x) = 1.

Suppose we have an one-field GT system

∂ipj = f(pi, pj, u) ∂iu, ∂i∂ju = h(pi, pj, u).

We can add one field more to the system as follows:

∂iv = f(pi, v, u) ∂iu.

We call this procedure regular field extension.



Example 3. Let

θ(z, τ) =
∑
α∈Z

(−1)αe2πi(αz+α(α−1)
2 τ), ρ(z, τ) =

θz

θ
.

Then

∂αpβ =
1

2πi
(ρ(pα − pβ)− ρ(pα))∂ατ,

∂α∂βτ = −
1

πi
ρ′(pα − pβ)∂ατ∂βτ,

where α, β = 1, ..., N, α 6= β, is an one-field GT-

system. Regular extensions give rise to

∂αuβ =
1

2πi
(ρ(pα − uβ)− ρ(pα))∂ατ, β = 1, ..., n.



Another basic notion of the hydrodynamic reduction

approach is the generating relation for reductions:

∂iF (pj)

F (pi)− F (pj)
=

∂iG(pj)

G(pi)−G(pj)
(4)

Here we omit arguments u1, ..., un in F, G.

The derivatives in (14) supposed to be calculated in

virtue of the GT-system.

For Example 2 with P (x) = x(x−1) there are following

n-field solutions (F,G):



Consider the following system of linear PDEs:

∂2h

∂uj∂uk
=

sj

uj − uk
·
∂h

∂uk
+

sk
uk − uj

·
∂h

∂uj
, i, j = 1, ..., n, j 6= k,

and

∂2h

∂uj∂uj
= −

1 +
n+2∑
k=1

sk

 sj

uj(uj − 1)
· h+

sj

uj(uj − 1)

n∑
k 6=j

uk(uk − 1)

uk − uj
·
∂h

∂uk
+

 n∑
k 6=j

sk
uj − uk

+
sj + sn+1

uj
+
sj + sn+2

uj − 1

 · ∂h
∂uj



It is easy to show that the vector space H of all

solutions is n+ 1-dimensional.

For any h ∈ H we put

S(h, p) =
∑

1≤i≤n
ui(ui − 1)(p− u1)...̂i...(p− un)hui+

(1 +
∑

1≤i≤n+2

si)(p− u1)...(p− un)h

This is a polynomial of degree n.

Proposition. Let h1, h2, h3 are linearly independent

elements of H. Then

F =
S(h1, p)

S(h3, p)
, G =

S(h2, p)

S(h3, p)

satisfy the defining relation for reductions.



In the elliptic case

S(h, p) =
∑

1≤α≤n

θ(uα)θ(p− uα − η)

θ(uα + η)θ(p− uα)
huα−

(s1 + ...+ sn)
θ′(0)θ(p− η)

θ(η)θ(p)
h.

Here η = s1u1+...+snun+rτ+η0, where s1, ..., sn, r, η0

are arbitrary constants and h(u1, ..., un, τ) is a solution

of the following elliptic hypergeometric system:



huαuβ = sβ(ρ(uβ − uα) + ρ(uα + η)− ρ(uβ)− ρ(η))huα+

sα(ρ(uα − uβ) + ρ(uβ + η)− ρ(uα)− ρ(η))huβ,

huαuα = sα
∑
β 6=α

(ρ(uα)+ρ(η)−ρ(uα−uβ)−ρ(uβ+η))huβ+

(
∑
β 6=α

sβρ(uα − uβ) + (sα + 1)ρ(uα + η)+

sαρ(−η) + (s0 − sα − 1)ρ(uα) + 2πir)huα−

s0sα(ρ′(uα)− ρ′(η))h,

hτ =
1

2πi

∑
β

(ρ(uβ + η)− ρ(η))huβ −
s0

2πi
ρ′(η)h.



Given GT-system and a solution (F,G) of the defining

relation for reduction, one can easily construct an

integrable system of the form

n∑
j=1

aij(u)uj,t +
n∑

j=1

bij(u)uj,y +
n∑

j=1

cij(u)uj,x = 0,

where i = 1, ..., l. Here l ≥ n,

u = (u1, ..., un)t.

Integer k = l − n is called the defect of the system.

The coefficients are defined by relations:

n∑
j=1

(aij(u)F (p, u1, ..., un) + bij(u)G(p, u1, ..., un)+

cij(u))gj(p, u1, ..., un) = 0, i = 1, ..., l,

where by definition g1 = 1.



Namely, consider the linear space V of functions in p

generated by

{F (p, u1, ..., un)gj(p, u1, ..., un),

G(p, u1, ..., un)gj(p, u1, ..., un),

gj(p, u1, ..., un); j = 1, ..., n}.

Then the system contains of l equations iff V is

(3n− l)-dimensional.



Part 2. Weakly nonlinear systems

For the generic GT-systems the functions f, h have

poles at pi = pj. However, there exist GT-systems

holomorphic at pi = pj.

We call integrable 3D-system related to a GT-system

holomorphic at pi = pj weakly nonlinear. It is possible

to check that if l = n then any 2D-system that describe

travel wave solutions

u = u(k1x+ k2y + k3t, k4x+ k5y + k6t)

for weakly nonlinear 3D-system is a weakly nonlinear

2D-system.



Example. Consider the following 3D-system (Ferapontov,

Khusnutdinova):

vt + avx + pvy + qwy = 0, wt + bwx + rvy + swy = 0,

where

a = w, b = v,

s =
P (v)

w − v
+

1

3
P ′(v), p =

P (w)

v − w
+

1

3
P ′(w),

r =
P (w)

w − v
, q =

P (v)

v − w
.

Here P is arbitrary polynomial of third degree.



The corresponding GT-system is given by

∂1p2 =
P (w)

(w − v)P (v)
p2

2p1 +

(
1

w − v
+
P ′(v)

P (v)

)
p2p1−

(
1

v − w
+
P ′(w)

P (w)

)
p2 −

P (v)

(v − w)P (w)
,

∂1v = p1 ∂1w,

∂1∂2w =

(
P (w)

(v − w)P (v)
p1p2 +

1

v − w
+
P ′(w)

P (w)

)
∂1w∂2w.



It is possible to verify that this GT-system is equivalent

to

∂ipj = 0, ∂iu2 = g2(pi)∂iu1, ∂i∂ju1 = 0,

where

g2(p) =
a2p

2 + a1p+ a0

b2p2 + b1p+ b0
.

Example. The dispersionless Hirota equation

a1ZxZyt+a2ZyZxt+a3ZtZxy = 0, a1 +a2 +a3 = 0

corresponds to a holomorphic GT-system.



Fix pairwise distinct numbers λ0, λ1, ..., λn. Consider

the following n+1-field GT-system with fields u1, ..., un, w.

∂ipj = 0, ∂iuj =
λj − λ0

pi − λj
∂iu, ∂i∂ju = 0. (5)

For any constant a = (a0, a1, ..., an) we put

S(a, p) =
a0

p− λ0
+

n∑
i=1

aie
ui

p− λi
.

Proposition. The functions

F =
S(a1, p)

S(a3, p)
, G =

S(a2, p)

S(a3, p)

satisfy the defining relation for reductions.



The corresponding 3D-systems have the form:∑
1≤j≤n,j 6=i

(a2,ia3,j − a2,ja3,i)e
uj
ui,t1 − uj,t1
λi − λj

+

(a2,ia3,0 − a3,ia2,0)
ui,t1

λi − λ0
+

∑
1≤j≤n,j 6=i

(a3,ia1,j − a3,ja1,i)e
uj
ui,t2 − uj,t2
λi − λj

+

(a3,ia1,0 − a1,ia3,0)
ui,t2

λi − λ0
+

∑
1≤j≤n,j 6=i

(a1,ia2,j − a1,ja2,i)e
uj
ui,x − uj,x
λi − λj

+

(a1,ia2,0 − a2,ia1,0)
ui,x

λi − λ0
= 0

where i = 1, ..., n.



Proposition. This system possesses the following

pseudopotential representation

ψt1 =
S(a1, ξ)

S(a3, ξ)
ψx, ψt2 =

S(a2, ξ)

S(a3, ξ)
ψx,

where ξ is a spectral parameter.



Equations of the form

A1Ztt +A2Zxt +A3Zyt +A4Zyy +A5Zxy +A6Zxx = 0

where Ai = Ai(Zx, Zy, Zt), correspond to n = 3, l = 4.

Equations

F (Ztt, Zxt, Zyt, Zyy, Zxy, Zxx) = 0

correspond to n = 5, l = 8.



Definition. An (1+1)-dimensional hydrodynamic type

system of the form

rit = λi(r1, ..., rN) rix, i = 1, ..., N, (6)

is called semi-Hamiltonian if the following relation

holds

∂j
∂iλ

k

λi − λk
= ∂i

∂jλ
k

λj − λk
, i 6= j 6= k, (7)

Recall that semi-Hamiltonian systems have infinitly

many symmetries and conservation laws of hydrodynamic

type.



Definition. A hydrodynamic reduction of the 3D-

system is a pair of compatible semi-Hamiltonian hydrodynamic

type systems

rit = λi(r1, ..., rN) rix, riy = µi(r1, ..., rN) rix, i = 1, ..., N,

(8)

and functions v1(r1, ..., rN), ..., vn(r1, ..., rN) such that

for each solution of (8) functions

u1 = v1(r1, ..., rN), ..., un = vn(r1, ..., rN) (9)

are solutions of the 3D-system.

According to [?] a system (??) is called integrable if

it possess sufficiently many hydrodynamic reductions.

Namely, substitute (9) into (??), use (8) and equate

coefficients at rlx to zero. We obtain

n∑
j=1

aij(v) ∂lvjλ
l+

n∑
j=1

bij(v) ∂lvjµ
l+

n∑
j=1

cij(v) ∂lvj = 0, i = 1, ..., n+k,

(10)

For each fixed l this is the same linear overdetermined

system for ∂lv1, ..., ∂lvn. This linear system must have



non-zero solution so all its n × n minors must be

equal to zero. These minors are polynomials in λl, µl

independent on l. We assume that these system of

polynomial equations is equivalent to one equation

P (λl, µl) = 0 (11)

(othewise λl, µl are fixed and we don’t have sufficiently

many reductions). Equation (11) defines the so-called

disspersion curve. Let p be a coondinate on this curve.

Then (11) is equivalent to equations

λl = F (pl, v1, ..., vn), µl = G(pl, v1, ..., vn)

for some functions F, G. Assume that for generic pl
the linear system (10) has one solution up to proportionality.

Solving this system we obtain

∂ivk = gk(pi, v1, ..., vn) ∂iv1, k = 2, ..., n, i = 1, ..., N,

(12)

for some functions gk. Rewrite (8) in the form

rit = F (pi, v1, ..., vn)rix, riy = G(pi, v1, ..., vn)rix, i = 1, ..., N,

(13)



and note that compatibility condition reads

∂iF (pj)

F (pi)− F (pj)
=

∂iG(pj)

G(pi)−G(pj)
(14)

Here we omit arguments v1, ..., vn in F, G. From (14)

we can find ∂ipj in the form

∂ipj = f(pi, pj, v1, ..., vn) ∂iv1 , i 6= j, i, j = 1, ..., N.

Finally, compatibility condition ∂i∂jvk = ∂j∂ivk for some

k gives

∂i∂jv1 = h(pi, pj, v1, ..., vn) ∂iv1∂jv1, i 6= j, i, j = 1, ..., N.

Collecting these equations together we obtain a system

of the form (??). Hydrodynamic reductions of (??)

depend on solution of this system (??). We want

to have as many reductions as possible, therefore

we assume that the system (??) is compatible. In

this case hydrodinamic reduction locally depends on

N funktions in one variable.



Integrable 3D-systems related to

the generalized hypergeometric functions

We construct new wide classes of pseudopotentials

written in the following parametric form:

Φy = F1(p,u), Φt = F2(p,u), Φx = F3(p,u),

where u = (u1, ..., un) and the p-dependence of functions

Fi is defined by the ODE

Fi,p = φi(p,u)·−s1 (p− 1)−s2(p− u1)−s3...(p− un)−sn+2

Here s1, ..., sn+2 are arbitrary constants and φi are

some polynomials in p of degree n− k.

We call them pseudopotentials of defect k.



for unknown function h(u1, . . . , un). If n = 1, then this

system coincides with the standard hypergeometric

equation

u(u−1) y(u)′′+ [(α+ β+ 1)u− γ] y(u)′+αβ y(u) = 0,

where s1 = −α, s2 = α− γ, s3 = γ − β − 1.

Proposition 1. This system is compatible for any

constants s1, . . . , sn+2. The dimension of the linear

space H of solutions of the system equals n+ 1.



Define function P (g, ζ) by

P (g, ζ) =
∫ ζ

0
S(g, p)(p− u1)−s1−1...(p− un)−sn−1×

p−sn+1−1(p− 1)−sn+2−1dp.

Let g0, g1, g2 ∈ H be linear independent.

Theorem. The compatibility conditions Φtitj = Φtjti

for the system

Φtα = P (gα, p), α = 0,1,2 (15)

are equivalent to a system of PDEs for u1, ..., un of

the form:
n∑

j=1

aij(u)uj,t1 +
n∑

j=1

bij(u)uj,t2 +
n∑

j=1

cij(u)uj,t0 = 0,

where i = 1, ..., n, and t0 = x.



The explicit form of this system is given by

∑
i 6=j

((g1,ujg2,ui−g2,ujg1,ui)
uj(uj − 1)ui,t0 − ui(ui − 1)uj,t0

uj − ui
+

(1 + s1 + ...+ sn+2)(g1g2,uj − g2g1,uj)uj,t0+

∑
i 6=j

((g2,ujg0,ui−g0,ujg2,ui)
uj(uj − 1)ui,t1 − ui(ui − 1)uj,t1

uj − ui
+

(1 + s1 + ...+ sn+2)(g2g0,uj − g0g2,uj)uj,t1+

∑
i 6=j

((g0,ujg1,ui−g1,ujg0,ui)
uj(uj − 1)ui,t2 − ui(ui − 1)uj,t2

uj − ui
+

(1 + s1 + ...+ sn+2)(g0g1,uj − g1g0,uj)uj,t2 = 0.



Pseudopotentials of defect k > 0

To define pseudopotentials of defect k, we fix k linearly

independent generalized hypergeometric functions h1, ..., hk ∈
H. For any g ∈ H define Sk(g, p) by

Sk(g, p) =
1

∆

∑
1≤i≤n−k+1

ui(ui − 1)(p− u1)× ...̂i...

×(p− un−k+1)∆i(g).

Here

∆ = det


h1 ... hk

h1,un−k+2
... hk,un−k+2

......... ... .........
h1,un ... hk,un

 ,



∆i(g) = det


g h1 ... hk
gui h1,ui ... hk,ui

gun−k+2 h1,un−k+2
... hk,un−k+2

......... ... ... .........
gun h1,un ... hk,un

 .

It is clear that Sn,k(g, p) is a polynomial in p of degree

n− k.

Example 3. In the simplest case n = 2, k = 1 we

have

S1(g, p) = u1(u1 − 1)(p− u2)
gh1,u1

− gu1h1

h1
+

u2(u2 − 1)(p− u1)
gh1,u2

− gu2h1

h1
.



Define the function Pk(g, p) by

Pk(g, p) =
∫ p

0
Sk(g, p)(p−u1)−s1−1...(p−un−k+1)−sn−k+1−1

×(p−un−k+2)−sn−k+2...(p−un)−snp−sn+1−1(p−1)−sn+2−1dp.

Theorem. The compatibility conditions Φtitj = Φtjti

for the system

Φtα = Pk(gα, p), α = 0,1,2 (16)

are equivalent to the following system of PDEs for

u1, ..., un of the defect k:



∑
1≤i≤n−k,i6=j

(∆j(gq)∆i(gr)−∆j(gr)∆i(gq))

×
uj(uj − 1)ui,ts − ui(ui − 1)uj,ts

uj − ui
+

∑
1≤i≤n−k,i6=j

(∆j(gr)∆i(gs)−∆j(gs)∆i(gr))

×
uj(uj − 1)ui,tq − ui(ui − 1)uj,tq

uj − ui
+

∑
1≤i≤n−k,i6=j

(∆j(gs)∆i(gq)−∆j(gq)∆i(gs))

×
uj(uj − 1)ui,tr − ui(ui − 1)uj,tr

uj − ui
= 0,

where j = 1, ..., n− k and

n−k+1∑
i=1

∆i(gr)ui,ts =
n−k+1∑
i=1

∆i(gs)ui,tr,



n−k+1∑
i=1

∆i(gr)
um(um − 1)ui,ts − ui(ui − 1)um,ts

um − ui
=

n−k+1∑
i=1

∆i(gs)
um(um − 1)ui,tr − ui(ui − 1)um,tr

um − ui
,

where m = n− k+ 2, ..., n. Here q, r, s run from 0 to n

and t0 = x.



Example 4. In the case n = 3, k = 1 the formulas

can be rewritten as follows. Let h1, g0, g1, g2 be linearly

independent elements of H. Denote by Bij the cofactors

of the matrix
h1 g0 g1 g2
h1,u1

g0,u1
g1,u1

g1,u1
h1,u2

g0,u2
g1,u2

g1,u1
h1,u3

g0,u3
g1,u3

g1,u3

 .
Define vector fields Vi by

V1 = B22
∂

∂t0
+B23

∂

∂t1
+B24

∂

∂t2
,

V2 = B32
∂

∂t0
+B33

∂

∂t1
+B34

∂

∂t2
,

V3 = B42
∂

∂t0
+B43

∂

∂t1
+B44

∂

∂t2
.



Then the set of equations is equivalent to

V1(u2) = V2(u1), V2(u3) = V3(u2), V3(u1) = V1(u3).

and

u3(u3−1)(u1− u2)V1(u2) + u1(u1−1)(u2− u3)V2(u3)

+u2(u2 − 1)(u3 − u1)V3(u1) = 0.

There exist conservation laws of the form(
gr

h1

)
ts

=

(
gs

h1

)
tr

.

Introducing z such that ztr = gr
h1

, we reduce the system

to a quasi-linear equation of the form∑
i,j

Pi,j(zt0, zt1, zt2) zti,tj = 0, i, j = 0,1,2. (17)



In the paper by E. Feropontov an inexplicit description

of all integrable equations (17) was proposed. The

equation constructed above corresponds to the generic

case in this classification. Indeed, it depends on five

essential parameters s1, ..., s5 which agrees with the

results of this paper.



Integrable elliptic pseudopotentials

If

Φt = A(p,u), Φy = B(p,u), where p = Φx

is a pseudopotential representation for some integrable

3D-system, then for any p ∈ C the point
(
Appp
A2
pp
, Ap

)
belongs to an algebraic curve of genus g, whose coefficients

depend on u.

Now we construct pseudopotentials and integrable systems

related to the elliptic curve. For these systems u =

(u1, . . . , un, τ), where τ is the parameter of the elliptic

curve also being an unknown function in the system.



The coefficients of the systems are expressed in terms

of the following elliptic generalization of hypergeometric

functions in several variables:

guαuβ = sβ(ρ(uβ − uα) + ρ(uα + η)− ρ(uβ)− ρ(η))guα+

sα(ρ(uα − uβ) + ρ(uβ + η)− ρ(uα)− ρ(η))guβ,

guαuα = sα
∑
β 6=α

(ρ(uα)+ρ(η)−ρ(uα−uβ)−ρ(uβ+η))guβ+

(
∑
β 6=α

sβρ(uα − uβ) + (sα + 1)ρ(uα + η)+

sαρ(−η) + (s0 − sα − 1)ρ(uα) + 2πir)guα−

s0sα(ρ′(uα)− ρ′(η))g,

gτ =
1

2πi

∑
β

(ρ(uβ + η)− ρ(η))guβ −
s0

2πi
ρ′(η)g

for a single function g(u1, . . . , un, τ).



Here η = s1u1+...+snun+rτ+η0, s0 = −s1−...−sn,
where s1, ..., sn, r, η0 are arbitrary constants, and

θ(z) =
∑
α∈Z

(−1)αe2πi(αz+α(α−1)
2 τ), ρ(z) =

θ′(z)

θ(z)
.

We omit the second argument τ of the functions θ, ρ

and use the notation

ρ′(z) =
∂ρ(z)

∂z
, ρτ(z) =

∂ρ(z)

∂τ
, θ′(z) =

∂θ(z)

∂z
, θτ(z) =

∂θ(z)

∂τ
.

It turns out that the dimension of the space of solutions

for the system equals n+ 1.



Describe pseudopotentials of defect k = 0 related to

the elliptic hypergeometric functions. The pseudopotential

An(p, u1, ..., un, τ) is defined in a parametric form by

An = Pn(g1, p), p = Pn(g0, p),

where g1, g0 be linearly independent elliptic hypergeometric

functions

Pn(g, p) =
∫ p

0
Sn(g, p)e2πir(τ−p)×

θ′(0)−s1−...−snθ(u1)s1...θ(un)sn

θ(p)−s1−...−snθ(p− u1)s1...θ(p− un)sn
dp,

and

Sn(g, p) =
∑

1≤α≤n

θ(uα)θ(p− uα − η)

θ(uα + η)θ(p− uα)
guα−

(s1 + ...+ sn)
θ′(0)θ(p− η)

θ(η)θ(p)
g.

We call them elliptic pseudopotential of defect 0.



Some important examples of pseudopotentials A,B

related to the Whitham averaging procedure for integrable

dispersion PDEs, to the Frobenious manifolds, and to

the WDVV-associativity equation were found by B.

Dubrovin and I. Krichever.

In the case s1 = ... = sn = r = 0, η0 → 0 our

pseudopotentials coincide with elliptic pseudopotentials

constructed by Dubrovin and Krichever.



Our goal now is to describe ”integrable” pseudopotentials

A = ψ(p,u).

Consider the simplest one-field case: A = ψ(p, u). The

Benney hierarchy provides the following two examples

ψ =
p2

2
+ u, and ψ = log(p− u).

One explicit example more:

ψ =
√
u (p2 + c1) + c2.



Integrable pseudopotentials in the one-field case

”Integrable” pseudopotentials ψ(u, p) are given by

ψu =
Q(ψp)

ψpp
,

ψppp

ψ2
pp

=
R(ψp)

Q(ψp)
, (18)

where R and Q are polynomials in ψp such that

degR ≤ 3, degQ ≤ 4. In the generic case (18) implies

ψppp

ψ2
pp

=
k1

ψp − b1
+ ...+

k4

ψp − b4
, (19)

b′i = (1− ki) a
∏
j 6=i

(bi − bj), i = 1, ...,4, (20)

where ki are any constants such that k1 + ...+k4 = 3,

and bi = bi(u). The function a(u) can be chosen

arbitrarily due to the admissible transformations u →
s(u).



Let us choose

a =
1

(b2 − b3)(b1 − b4)
+

1

(b1 − b2)(b3 − b4)
.

Then the general solution of (20) is given by

b1 =
z2 + uy2

z1 + uy1
, b2 =

y2

y1
, b3 =

z2 + y2

z1 + y1
, b4 =

z2

z1
,

where yi(u) are two arbitrary solutions of the gypergeometric

equation

u(u−1) y(u)′′+ [(α+ β+ 1)u− γ] y(u)′+αβ y(u) = 0,

where k1 = 1 + α− γ, k2 = 1− α, k3 = γ − β, and

zi = −uyi +
u(u− 1)

k1 + k2 + k3 − 2
y′i.



System (18) can be reduced to quadratures as follows.

Determine φ(u, p) as the solution of the system:

φu = −
φ(φ− 1) y′1
β(y1φ+ z1)

, φp =
φk1(φ− u)k2(φ− 1)k3

y1φ+ z1
.

Then the solution of the following system in involution

ψu =
y2y
′
1 − y1y

′
2

β(y1φ+ z1)
φ1−k1(φ− u)1−k2(φ− 1)1−k3,

ψp =
y2φ+ z2

y1φ+ z1
,

is a general solution of (18).



Definition of integrability

Consider the dispersionless Lax equation

Lt = {ψ,L} (21)

Suppose there exists a hydrodynamic-type system

rit = vi(r)rix i = 1,2, ..., N, (22)

and functions u = u(r) and L = L(r, p) such that

these functions satisfy (21) for any solution r(x, t) of

(26). Then (26) is called a hydrodynamic reduction

for (21).

The pseudopotential ψ(u, p) is called integrable if (21)

has ”many” hydrodynamic reductions with arbitrary

N .



Example. Let us show that ψ = ln(p−u) is integrable.

Let w(r1, ..., rN), pi(r
1, ..., rN), i = 1, ..., N be an arbitrary

solution of the following system

∂jpi =
∂jw

pj − pi
, ∂ijw =

2∂iw∂jw

(pi − pj)2
, j = 1, ..., N, i 6= j.

Here ∂i ≡ ∂
∂ri

. This system is in involution and therefore

its solution depends on 2N functions of one variable.



Define a function L(p, r1, ..., rN) by

∂iL =
∂iwLp

p− pi
, i = 1, ..., N. (23)

The system (23) defines the function L uniquely up

to unessential transformations L→ λ(L).

Let u(r1, ..., rN) be a solution of the system

∂iu =
∂iw

pi − u
, i = 1, ..., N. (24)

Proposition. The system

rit =
1

pi − u
rix (25)

is a hydrodynamic reduction of (21). �



Let us introduce the following notation:

fi =
ψu

ψp|p=pi − ψp
, fij =

ψu|p=pj

ψp|p=pi − ψp|p=pj

, i 6= j.

Theorem. For any integrable pseudopotential ψ(u, p)

the following functional equation

∂p

(
f12 ∂p2f2 − f21 ∂p1f1 + ∂u(f2 − f1) + f1 ∂pf2 − f2 ∂pf1

f1 − f2

)

= 0

holds.

The pseudopotentials described above correspond to

the generic solution of this functional equation.



Integrable 2D-systems

The hydrodynamic reductions of our pseudopotentials

of defect 0 are integrable systems of the form

rit = vi(r1, ..., rN)rix, i = 1,2, ..., N. (26)

The velocities vi are defined by an universal overdetermined

compatible system of PDEs of the form

∂ipj =
pj(pj − 1)

pi − pj
∂iw, ∂ijw =

2pipj − pi − pj
(pi − pj)2

∂iw ∂jw

for some functions w(r1, ..., rN), pi(r
1, ..., rN). Here i, j =

1, ..., N, i 6= j.



Define functions ui by the following system of PDEs

∂iuj =
uj(uj − 1)∂iw

pi − uj
, i = 1, ..., N, j = 1, ..., n.

Then our integrable 2D-systems are given by

rit =
S(g1, pi)

S(g2, pi)
rix,

where g1, g2 ∈ H.

For some very special values of parameters si these

systems are related to the Whitham hierarchies, to

the Frobenious manifolds, and to the associativity

equation.



Canonical series of conservation laws

The transformation L(x, t, p)→ p(x, t, L) reduces

Lt = {ψ,L}

to the following conservative form

pt = ψ(U, p)x. (27)

Here L plays a role of parameter. If we substitute any

expansion of p w.r.t. L into (27), we get an infinite

sequence of conservation laws.

For the pseudopotentials above constructed we get

Pn(h2, ζ)t = Pn(h1, ζ)x,

where

ζ = a0 + a1L+ a2L
2 + ....



Definition. Two integrable pseudopotentials ψ1, ψ2

are called compatible if the system

Lt1 = {L,ψ1}, Lt2 = {L,ψ2}

possesses sufficiently many compatible pairs of hydrodynamic

reductions

rit1 = vi1(r1, ..., rN)rix, rit2 = vi2(r1, ..., rN)rix

for each N ∈ N.

If ψ1, ψ2 are compatible, then ψ = c1ψ1 + c2ψ2 is

integrable for all constants c1, c2.

Example. The pseudopotentials ψ1 = ln(p− u1) and

ψ2 = ln(p− u2) are compatible. Moreover,

ψ = c1 ln(p− u1) + ...+ cn ln(p− un)

is integrable for each constants c1, ..., cn.



Proposition. Let h1, h2, h3 ∈ H are linear independent.

Then pseudopotentials

ψ1 = Pn(h1, ζ), ψ2 = Pn(h2, ζ), p = Pn(h3, ζ)

are compatible.

Proposition. The compatibility conditions for the

system

Lt1 = {L,ψ1}, Lt2 = {L,ψ2}

are equivalent to a quasilinear system of PDEs of the

form
n∑

j=1

aij(u)uj,tα +
n∑

j=1

bij(u)uj,tβ +
n∑

j=1

cij(u)uj,tγ = 0,

where i = 1, ..., n.


