Quantum divisibility test and its

application in mesoscopic physics

G.B. Lesovik (a, speaker),
M.V. Suslov (b),

G. Blatter (c)

a. L.D. Landau Institute for Theoretical Physics RAS
b. Moscow Institute of Physics and Technology c. Theoretische Physik, Zürich

We present a quantum algorithm to transform the cardinality of a set of charged particles flowing along a quantum wire into a binary number. The setup performing this task (for at most N particles) involves $\log 2 \mathrm{~N}$ quantum bits serving as counters and a sequential read out. Applications include a divisibility check to experimentally test the size of a finite train of particles in a quantum wire with a one-shot measurement and a scheme allowing to entangle multi-particle wave functions and generating Bell states, Greenberger-Horne-Zeilinger states, or Dicke states in a Mach-Zehnder interferometer.

We present:
a quantum algorithm to transform the cardinality of a set of charged particles flowing along a quantum wire into a binary number.

The setup performing this task (for at most N particles) involves $\log 2 \mathrm{~N}$ quantum bits serving as counters and a sequential read out.

Applications include:
a divisibility check to experimentally test the size of a finite train of particles in a quantum wire with a one-shot measurement
and
a scheme allowing to entangle multi-particle wave functions and generating Bell states, Greenberger-Horne-Zeilinger states, or Dicke states in a Mach-Zehnder interferometer.

Counting of $n<N$

44

$$
\text { spin } \frac{11}{2}
$$

$$
\therefore \mathbb{T}_{n}
$$

or N meanurenurts memeartions
$4 \stackrel{\varphi}{4}$-after 1 electron passed $\varphi_{0}<\frac{\pi}{N}$

$$
P_{\uparrow}=\cos ^{2}\left(n \varphi_{0} / 2\right)
$$

measuring $P_{\uparrow}=\frac{\left\langle m_{\uparrow}\right\rangle}{N}$

$$
n=\frac{2}{\varphi_{0}} \arccos \sqrt{P_{\uparrow}}
$$

To have $\delta P^{+}=P^{\uparrow}(n+1)-P^{\uparrow}(n) \gg$

$$
\begin{aligned}
& \gg\left(\left(\left(\delta m^{\top}\right)^{2}\right\rangle\right)^{1 / 2}=\left[P^{\top}\left(1-P^{\uparrow}\right) / N_{m}\right]^{1 / 2} \\
& N_{m} \gg \frac{N^{2}}{\pi^{2}}(\gg 1)
\end{aligned}
$$

Effective counting

$\nRightarrow \Rightarrow \| \quad 1$ electron passed
$\Rightarrow 母$ \# 2

\# 4 \& 4
$\nrightarrow \forall 5$

* $\|_{6}$
* \forall

4 4 4 8

$$
\begin{gathered}
\uparrow \\
\varphi_{j}=\frac{2 \pi}{2^{3}} \cdot n \\
e^{i \varphi_{i} \mid}|\uparrow\rangle+e^{-i \varphi j}|\downarrow\rangle
\end{gathered}
$$

like in quautum Founier transtormation

$$
\begin{aligned}
& |n\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{q=0}^{N-1} e^{2 \pi i q n / N}|q\rangle \\
& \left|n_{k} n_{k-1} \ldots n_{1}\right\rangle \rightarrow \\
& \rightarrow \frac{1}{2^{k / 2}}\left(|0\rangle+e^{2 \pi i \frac{n_{1}}{2}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i\left[\frac{\left.n_{2}+\frac{n}{2}\right]}{4}\right\rangle}|1\rangle\right. \\
& =\frac{1}{2^{k / 2}} \bigotimes_{q=1}^{k}\left[|0\rangle+e^{2 \pi i\left[0, n_{k}-n_{1}\right]}|1\rangle\right)=
\end{aligned}
$$

We measure state of spins, starting 1-st, and rotate the others to $\Delta \varphi_{j}=-\frac{2 \pi}{2 i}\left(n_{j i} \cdots n_{1}\right)$

$$
\varphi_{j}+\Delta \varphi_{j}=\frac{2 \pi}{2 j} n_{j} \cdot 2^{j-1}=\pi \cdot n_{j}
$$

So, unrotated $s \beta$ in means $n_{j}=0$ rotated to " means $n_{j}=1$
We got binary representation of

$$
n=\left(n_{k} n_{k-1} \ldots n_{1}\right)
$$

Simple single shat check 17 of divisibility to 2^{k} if at least one spin is detected "down" the number n is NOT divisible to 2 K it all "pp"
then $n=2^{k} \cdot C \quad C$-integer

$$
P_{\uparrow}=\cos ^{2} \frac{\pi h}{2^{j}}
$$

if $0<n<2^{k}$

$$
\begin{gathered}
n=2^{m} \cdot D \quad D \text { is odd } \\
0 \leq m<K
\end{gathered}
$$

for $\dot{j}^{*}=m+1$ ONLY

$$
P_{\uparrow}=\cos ^{2}\left(\frac{\pi \cdot 2^{m}}{2^{m+1}} \cdot D\right)=0
$$

for all the other $j \phi_{\text {; }}$ is a multiple of 11 (j $<j_{j}^{*}$) or a fraction of $\pi / 2 \quad(j>j)$

probability tunueling
 effective potential Cue to quantization .

+ gate potential
 potential

