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• A solid with a single quantum two-level system
• Adiabatic regime
• Finite-frequency response
• The case of incoherent tunnelling



Torsional oscillator experiments:
• Kim and Chan (2004, 2005, 2006)
• Rittner and Reppy (2006, 2007)
• Kondo, Takada, Shibayama, Shirahama (2007)
• Aoki, Graves and Kojima (2007)
• Clark, West and Chan (2007); Clark, Maynard and Chan (2008)
• Kim, Xia, West, Lin, Clark, Chan (2008)
• Hunt, Pratt, Gadagkar, Yamashita, Balatsky, Davis (2009)

Absence of mass �ow:
• Greywall (1977)
• Bonfait, Godfrin, Castaing (1989)
• Day, Hermann, Beamish (2005); Day and Beamish (2006, 2007)

Observation of mass �ow:
• Ray and Hallock (2008)



function for the ground state, as well as recent
estimates (8, 9) are in favor of there being vacan-
cies at the 10−4 per site level, even in the pure
crystal (SOM text). Repeated efforts by Clark et al.
to grow perfect, pure, single crystals have always
observed nonclassical rotational inertia (NCRI)
on the 10−4 level relative to the classically expected
value (10), and this level or higher has been
confirmed by others (11–13). Simulations (14, 15)
performed using the path-integral Monte Carlo
method have been claimed to prove the non-
existence of vacancies; however, among other
difficulties the equivalent temperature in these
simulations is well above the relevant temper-
ature at which Bose condensation takes place. In
any case, simulating 104 atoms well enough to
find a single defect is beyond the capabilities of
those methods. I used a background density
(|Y|2) relative to the solid for pure 4He) of 2 ×
10−4 to 3 × 10−4, which fixes m in terms of g.

I assumed m* to be fairly light relative to that
of a helium atom (mHe) and used an estimate that
is often quoted,1/3mHe (other estimates are even
smaller). This effective mass is such that the un-
certainty energy that is necessary to localize the
mass on a single site is on the order of 10 K.
This is the same magnitude as estimates in (10)
of the energy cost of a vacancy and suggests that
those estimates may not have taken into account
the kinetic energy that could be gained by de-
localization. Regarding vacancies classically as
strictly local configurations of the lattice is not
reasonable.

m* and the density of the boson field allow
an estimate of the superfluid transition temper-
ature from the Bose-Einstein equation

kBTc ¼ 2pℏ2

m*

N

2:61V

� �2=3

ð3Þ

where N/V is the vacancy density, kB is
Boltzmann’s constant, and Tc is the transition
temperature.

By entering into Eq. 3 a typical solid density,
a vacancy concentration of 2 × 10−4 to 3 × 10−4

per site, and a mass of 1/3mHe, the resulting
transition temperature is ~50 to 70 mK. This is
very close to the transition temperature at which
thermal hysteresis in the NCRI has been re-
ported (12, 16). I have discussed elsewhere (17)
why reversible NCRI appears so far above Tc.
One expects true superflow to be observable
only below this Tc, if at all.

The parameter g, or equivalently the scatter-
ing length a, is not something one can accurately
estimate. I next discuss here the consequences of
assuming that g is reasonably small. This perhaps
can be justified, again, from the fact that a light
mass implies a somewhat extended lattice distor-
tion. Here, I define a correlation length as

x ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
8pn0a

p
ð4Þ

where n0 = |Y2|, which is the exponential decay
length of a small perturbation in the vacancy
field, according to Eq. 1. Given that n0 = 3 × 10−4,

even if a is a whole lattice constant, x is 10
lattice constants or 3 nm; it would be reasonable
for x to be an order of magnitude larger. This is
still not quite the scale at which the variation of
surface-to-volume ratio in NCRI occurs (18),
but almost.

What is of most interest is the effect of de-
fects being attractive sites for vacancies. A dis-
location core, for instance, is said to attract on
the order of one vacancy per atomic length, cal-
culated on the basis of localized high-energy
vacancies (19). This amounts to a potential well
in V that could be estimated as VR2 ≈ 10 to 15 K,
where R is the well’s radius. Balancing this
against the repulsive interaction gY4, a disloca-
tion core might be capable of attracting a cloud
of º1/g vacancies with a radius on the order of
x. Thus, the effect of dislocations can be some-
what magnified. Correspondingly, one would
expect there to be similar diffuse densities of
delocalized vacancies around grain boundaries
and near surfaces. I would consider this to be
one of the few possibile explanations for the
degree to which crystal imperfection appears to
enhance NCRI.

Why small concentrations of 3He produce
large effects remains an open question.

It seems possible to provide an accounting of
most of the puzzling properties of low-temperature
solid He by describing it as a Gross-Pitaevskii
fluid of delocalized quantum vacancies. The idea
that the superfluid is an intrinsic property of the
pure crystal, which is locally enhanced by imper-
fections, seems to account for the low and rea-
sonably invariant genuine superfluid transition
and the large variations in the quantity of super-
flow, which otherwise appear to be irreconcilable.
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Evidence for a Superglass
State in Solid 4He
B. Hunt,1* E. Pratt,1* V. Gadagkar,1 M. Yamashita,1,2 A. V. Balatsky,3 J. C. Davis1,4†

Although solid helium-4 (4He) may be a supersolid, it also exhibits many phenomena
unexpected in that context. We studied relaxation dynamics in the resonance frequency f(T ) and
dissipation D(T ) of a torsional oscillator containing solid 4He. With the appearance of the
“supersolid” state, the relaxation times within f(T ) and D(T ) began to increase rapidly together. More
importantly, the relaxation processes in both D(T ) and a component of f(T ) exhibited a complex
synchronized ultraslow evolution toward equilibrium. Analysis using a generalized rotational
susceptibility revealed that, while exhibiting these apparently glassy dynamics, the phenomena were
quantitatively inconsistent with a simple excitation freeze-out transition because the variation in f
was far too large. One possibility is that amorphous solid 4He represents a new form of supersolid in
which dynamical excitations within the solid control the superfluid phase stiffness.

A“classic” supersolid (1–5) is a bosonic
crystal with an interpenetrating super-
fluid component. Solid 4He has long

been the focus of searches for this state (6). To
demonstrate its existence unambiguously, mac-
roscopic quantum phenomena (7) such as per-
sistent mass currents, circulation quantization,

quantized vortices, or the superfluid Josephson
effect must be observed. None of these effects
have been detected in solid 4He.

There are, however, indications that this ma-
terial could be a supersolid. This is because
high-Q torsional oscillators (TOs) containing sol-
id 4He exhibit an increase in resonance frequency
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must always change in a quantitatively related
manner. Such changes are measurable because

2( f0 − f (T ))

f0
¼ 1

Iw2
0

ℜ½c−1D (T )�

D(T ) − D∞ ¼ 1

Iw2
0

ℑ½c−1D ðTÞ� ð3A, 3BÞ

within the Debye model with suitable approx-
imations (31); D∞ ≡ g/Iw0. Moreover a well-
defined characteristic temperature T* for such a
susceptibility occurs when w0t(T*) = 1; both the
f (T) slope and the dissipation D(T) achieve
their maxima at T* (Fig. 1).

In Fig. 4A (left), we show a fit of Eq. 3B
to the measured D(T ) as a red line, while Fig.
4A (right) shows the resulting prediction from
Eq. 3A for f (T ) as the blue line. Comparison
to the measured f (T) (solid blue circles) shows
that this Debye susceptibility is inconsistent
with the relation between D(T) and f (T). Never-
theless, as the relaxation processes of D(t,T)
and f (t,T ) are synchronized (Fig. 3), there must
be an intimate relation between ℜ½c−1ðt; TÞ�
and ℑ½c−1ðt; TÞ�. To study this relation, one
should replot the data from Fig. 3, A and B, in
the complex plane with axes defined by ℑ½c−1D �
and ℜ½c−1D � [a Davidson-Cole (D-C) plot (31)].
This is a classic technique in which departures
of the data from the Debye model appear as geo-
metric features that can reveal characteristics
of the underlying physical mechanism linking
ℜ½c−1ðt; TÞ� and ℑ½c−1ðt; TÞ�.

We therefore plot DDðTÞ ¼ DðTÞ−D∞ ver-
sus 2ðf0 − f ðTÞÞ

f0
in Fig. 4B. It reveals that, in-

stantaneously upon warming, the D-C plot is a

symmetric elliptical curve, whereas after several
thousand seconds, the response has evolved into
the skewed D-C curve more familiar from studies
of the dielectric glass transition (34). But the max-
imum frequency shift expected from themaximum
observed dissipation within the Debye suscepti-
bility (vertical dashed lines) is again far too small.
Moreover, no temperature equilibration lag be-
tween the solid 4He sample and the mixing cham-
ber could generate the complex dynamics reported
in Fig. 4 because, for any given frequency shift, a
wide variety of different dissipations are observed
[see supporting online material (SOM) text].

A simple superfluid transition is inconsistent
with all these observations because there should
be no synchronized dissipation peak associated
with f (T) (Figs. 1 and 4) and no ultraslow dynam-
ics in f (t,T) and D(t,T) (Figs. 2 and 3). Indeed,
these phenomena are more reminiscent of the
characteristics of a glass transition (34). Never-
theless, a simple freeze-out of excitations described
by a Debye susceptibility is also quantitatively
inconsistent because the dissipation peak is far
too small to explain the observed frequency shift
(Fig. 4A). Thus, when considered in combina-
tion with implications of the blocked annulus
experiments (9, 16), our observations motivate a
new hypothesis in which amorphous solid 4He
is a supersolid, but one whose superfluid phase-
stiffness can be controlled by the freeze-out of
an ensemble of excitations within the solid.

Within such a model, generation of excita-
tions at higher temperatures would suppress su-
perfluid phase stiffness. The complex relaxation
dynamics (Figs. 3 and 4) would reveal the excita-
tion freeze-out processes. Further, the anomalously
large frequency shifts (Fig. 4) would occur pre-
dominantly because of superfluid phase stiffness

appearing after excitation freezing. Such a mod-
el might also explain the diverse phenomenology
of solid 4He. For example, the w dependence of
T* (13) would occur because T* is the temper-
ature for which t(T*)w =1. The shear modulus
stiffening (21) would occur because of the freeze-
out of motion of these excitations, and T* would
increase with 3He concentration (8, 11) because,
with pinning, higher temperatures would be re-
quired to achieve the excitation rate t(T*)w0 = 1.
Finally, sample-preparation effects (10, 12) and
different responses from different TO types would
occur because the amorphousness allowing these
excitations would depend on annealing and TO
design.

Independent of these hypotheses, important
new features of solid 4He are revealed here. We
find synchronized ultraslow relaxation dynamics
of dissipation D(T) and a component of frequency
shift of f (T) in TOs containing amorphous solid
4He (Fig. 3). Such phenomena are reminiscent
of the glassy freeze-out of an ensemble of exci-
tations and inconsistent with a simple superfluid
transition. Nevertheless, although the evolutions
of f (T) and D(T) are linked dynamically, the
situation is also inconsistent with the simple ex-
citation freezing transition because there is an
anomalously large frequency shift (Fig. 4). One
possible explanation is that solid 4He is not a
supersolid and that the appropriate rotational
susceptibility model for its transition will be
identified eventually. But if superfluidity is the
correct interpretation of blocked annulus experi-
ments (9, 16), then our results indicate that solid
4He supports an exotic supersolid in which the
glassy freeze-out at T* of an unknown excitation
within the amorphous solid controls the super-
fluid phase stiffness. Such a state could be desig-
nated a “superglass.”
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Fig. 4. (A) Comparison of equil-
ibrated D(T) and f(T) data with
simple Debye model of suscepti-
bility in Eq. 1. The long-time
equilibrated data D(T) (left) and
f(T) (right) are plotted as filled
circles. The dashed line indicates
f0. The solid curves represent the
predicted relation between the
susceptibilities for a simple glassy
freeze-out transition. Although
the dissipation D(T) can be fit rea-
sonably well by this model (22),
the magnitude of the frequency
shift that is then predicted is
markedly smaller than observed.
(B) Time-dependent D-C plot.
This is a parametric plot of the
data shown in Fig. 3, A and B,
made by removing the explicit
dependence on temperature, with
axes defined by ℑ½c−D1� and
ℜ½c−D1� (Eq. 3). The vertical
dashed lines indicate the max-
imum value of 2(f0 – f)/f0 that
would be predicted by the
Debye susceptibility (Eq. 1), given the peak height of DD = D – D∞ (31).
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Classical theory of supersolids:

• Andreev and Lifshitz (1969); Chester (1970); Leggett (1970)

New theoretical developments:

• Proko�ev and Svistunov (2005); Pollet, Boninsegni, Kuklov, Prokof'ev,
Svistunov, Troyer (2007) super�uidity of grain boundaries

• Andreev (2007) quantum two-level systems
• Anderson (2007) �uid of �uctuating quantum vortices
• Nussinov, Balatsky, Graf, Trugman (2007) �standard glass� response
• Yoo and Dorsey (2009) viscoelastic solid
• Anderson (2009) rari�ed Gross-Pitaevskii super�uid of vacancies



A SOLID WITH A SINGLE
QUANTUM TWO-LEVEL SYSTEM

Ĥ0 =
1

2M
P2 − εσ̂3 + Jσ̂1 ,

2ε - energy di�erence, J - tunnelling amplitude.

The center of mass velocity:

V ≡ d

dt
R =

i

h̄
[H0,R] =

1

M
P

is a classical variable commuting with Ĥ0.

For Ĥ = Ĥ0 − FR

d

dt
V =

F

M



The expression for the �coordinate� of the crystal lattice

X = R +
m

2M
aσ̂3 .

follows from the de�nition of the center of mass position R:

MR = (M −m)X + mr = MX + m(r−X) ,

with u ≡ r−X replaced by −1
2aσ̂3.

If an external force f(t) is applied to the crystal lattice:

Ĥ = Ĥ0 −Xf(t) = −Rf(t)− ha(t)σ̂α ,

where hα(t) =
[
−J, 0, ε + m

2Maf(t)
]
, the crystal lattice velocity

v ≡ d

dt
X =

i

h̄

[
Ĥ0,X

]
=

1

M

(
P +

mJ

h̄
aσ̂2

)

does not commute with Ĥ.



d

dt
〈v〉 =

f

M
+

m

M

Ja

h̄

d

dt
〈σ2〉 ,

ADIABATIC REGIME

〈σα〉 ‖ hα ⇒ 〈σ2〉 = 0 ⇒ Meff = M



Andreev (2007)

starts from HTLS = −εσ̂3 + Jσ̂1

and applies the Galilean transformation to obtain

Ĥ =
M

2
v2 − mJ

h̄
(av) σ̂2 − εσ̂3 + Jσ̂1

(
≡ 1

2M
P2 + ĤTLS + const

)

This Hamiltonian (with v treated as classical variable) gives for the
TLS contribution to the total momentum P = Mv + 〈p〉:

〈p〉 = −
(

mJ

h̄

)2 tanh[E(v)/T ]

E(v)
a(av)

with
E(v) ≡

√
ε2 + J2 + (mJ/h̄)2 (av)2 .



FINITE-FREQUENCY RESPONSE

f(t) = f0 cos(ωt). For vanishing (but non-zero) dissipation
d

dt
σ̂α =

i

h̄
[H, σ̂α] = −2

h̄
εαβγhβσ̂γ

solution of linearized equations for 〈σ̂α〉 gives
d

dt
〈σ̂2〉 = −m

M

ω2

ω2 −Ω2

af(t)

h̄
〈σ̂1〉(0)

with Ω = 2E/h̄, 〈σ̂1〉(0) = −(J/E) tanh(E/T ) and E2 = ε2 + J2.

1

Meff(ω)
=

1

M
+

1

3M2

∑
n

ω2

(ω + i/τn)2 −Ω2
n

λn ,

where λn ≡ m2
nJ2

na2
n

h̄2En
tanh

En

T

and τn - transverse relaxation time.



THE CASE OF INCOHERENT TUNNELLING

The classical analog of the equation for dv/dt:
d

dt
v =

1

M

[
f − m

M

d

dt

du

dt

]
,

Substitution of

u(ω) = − 1

−iτω + 1

m

M

a(af)

4T cosh2(ε/T )

(Koshelev and Vinokur, 1991) gives

1

Meff(ω)
=

1

M
− ω2

12TM2

∑
n

1

−iτnω + 1
λ̃n , λ̃n =

m2
na2

n

cosh2(εn/T )



Torsional oscillator equation of motion

[
K − iγω − (I + IHe)ω

2
]
θ = 0

Nussinov, Balatsky, Graf, Trugman (2007);
Hunt, Pratt, Gadagkar, Yamashita, Balatsky, Davis (2009):

IHeω
2 = I0ω2 +

g

[1− iωτ(T )]




