Searching for a mean string theory description of the pure gauge theory in 4d

Oleg Andreev

Landau Days, June 2010

Physical reason for the 5th "dimension"

Left: a typical string-like flux tube of tension σ . Right: a "fat string" as a collection of thin strings with different tensions $\{\sigma_n\}$.

• Continuous spectrum of string tensions. σ can be promoted to a new spacetime coordinate. So, strings effectively live in some warped 5-dimensional space. Liouville field as the fifth dimension (*Polyakov* 1997)

- Discrete spectrum of string tensions.(Andreev and Siegel 2004)
- Both discrete and continues pieces.

The Model (soft wall metric model)

5-dimensional Euclidean background metric in string frame

$$ds^{2} = \frac{R^{2}}{z^{2}}h(z)\left(dx^{i}dx^{i} + dz^{2}\right), \quad h(z) = \exp\frac{1}{2}cz^{2}, \quad i = 1, \dots 4$$

We also take a constant dilaton ϕ . So, the gauge coupling doesn't run. Andreev (2006)

History

- Hirn and Satz, (2005). $h = \exp f z^4$
- Son et al (2006). $h = 1, \phi = cz^2$. Soft wall dilaton model
- Metsaev (2000). Regge like KK spectrum

Quark-Antiquark Potential

$$\langle W(C) \rangle \sim \exp\{-TE(r)\}, \quad T \to \infty.$$

Maldacena-Rey-Yee proposal: $\langle W(C) \rangle \sim \exp\{-S_{NG}\}$.

The potential is written in parametric form Andreev and Zakharov (2006)

$$r(\lambda) = 2\sqrt{\frac{\lambda}{c}} \int_0^1 dv \, v^2 e^{\frac{1}{2}\lambda(1-v^2)} \left(1 - v^4 e^{\lambda(1-v^2)}\right)^{-\frac{1}{2}},$$

$$E(\lambda) = \frac{g}{\pi} \sqrt{\frac{c}{\lambda}} \left(-1 + \int_0^1 dv \, v^{-2} \left[e^{\frac{1}{2}\lambda v^2} \left(1 - v^4 e^{\lambda(1-v^2)} \right)^{-\frac{1}{2}} - 1 \right] \right) \,.$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

There are two free parameters: c and $g = \frac{R^2}{\alpha'}$

Two options

- The Cornell model
- The lattice data

White (2007)

Two surprises

- c is of order $0.9 \, GeV^2$ and g is of order 1 The latter estimate looks like the end of phenomenology based on field theory (supergravity)
- Corrections to E are small

Meson spectrum via the Salpeter equation with E(r)

Giannuzzi (2008)

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Particle	Th. mass (MeV)	Exp. mass (MeV) $[7]$	Decay const. (MeV)
η_c	3025.3	2980.3 ± 1.2	342
η_c'	3603.5	3637.0 ± 4	266
η_c''	4039.3		195
J/ψ	3079.8	3096.916 ± 0.011	356
ψ'	3624.3	3686.09 ± 0.04	237
$\psi^{\prime\prime}$	4057.0	4039 ± 1	185
η_b	9433.9	9388.9 $^{+3.1}_{-2.3}$ (stat) \pm 2.7 (syst) [1]	637
η_b'	9996.8		430
$\eta_b^{\prime\prime}$	10347.5		367
Υ	9438.3	$9460.30 {\pm} 0.26$	686
$\Upsilon(2S)$	9998.6	10023.26 ± 0.31	484
$\Upsilon(3S)$	10348.8	10355.2 ± 0.5	335
$\Upsilon(4S)$	10622.3	10579.4 ± 1.2	301

Gluon Condensate

$$G_2 = \left\langle \frac{\alpha_s}{\pi} G^a_{\mu\nu} G^a_{\mu\nu} \right\rangle.$$

The goal is to compute the expectation value of a circular Wilson loop. Then

$$\ln W = -\sum_{n} c_n \alpha_s^n - \frac{\pi^2}{36} Z G_2 s^2 + O(s^3) \,,$$

s is a square of the loop.

For c = 0, it was done by *Gross* et al (1999) as well as *Maldacena* et al (1999) For $c \neq 0$, the leading terms were analytically computed by *Andreev and Zakharov* (2007) So,

$$G_2 = \frac{9}{\pi^2} \kappa g Z^{-1} c^2 \,, \quad \kappa = \frac{7}{3} \left(\frac{17}{6} - 4 \ln 2 \right) \,.$$

A numerical estimate

$$G_2 = 0.010 \pm 0.0023 \ GeV^2$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Multi-Quark Potentials

And reev (2008)

Top: Baryonic Wilson loop for SU(3). Bottom: A configuration in 5 dimensions

$$S = \sum_{i=1}^{3} S_{NG}(i) + S_{vert}.$$

Simple example

- The triangle formed by the quarks is equilateral
- The action S_{vert} is that of a massive particle. So, we have a new free parameter.

For arbitrary number of colors

- The Y-law at large distances
- universality of the string tension

Spatial String Tension

At finite T we use another deformation (now 10-dimensional)

$$ds^{2} = \frac{R^{2}}{z^{2}}h(z)\left(fdt^{2} + dx^{i}dx^{i} + f^{-1}dz^{2}\right) + h^{-1}(z)R^{2}d\Omega_{5}^{2}, \quad h(z) = \exp\frac{1}{2}cz^{2},$$

$$f = 1 - \frac{z}{z_T^4}, \quad T = \frac{1}{\pi z_T}, \quad i = 1, \dots 3.$$

And reev and Zakharov (2006), And reev (2007)

The Wilson loop to be considered is spatial. Its expectation value provides the pseudo-potential.

In addition, it is interesting to see what happens with internal degrees of freedom.

$$\sigma_s = \sigma \left(\frac{T}{T_c}\right)^2 \exp\left\{\left(\frac{T_c}{T}\right)^2 - 1\right\} \quad if \quad T \ge T_c \,,$$

with $T_c = \frac{1}{\pi} \sqrt{\frac{c}{2}}$ and $\sigma_s = \sigma$ if $T \leq T_c$.

Top: $E(r, \theta)$. Bottom: A comparison with the lattice and a hadronic gas model.

Green bars from Bali et al (1993), red bars from Karsch et al (1995); hadronic model by Agasian (2003).

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Baryonic Pseudo-Potential

And reev (2008)

For arbitrary number of colors

- The Y-law at large distances
- universality of the spatial string tension

In addition

- To leading order, at large distances, the potential and pseudo-potential are described by 5dimensional theory.
- The discrepancy for $T > 3T_c$ is due to the running coupling.

Renormalized Polyakov Loop in the Deconfined Phase

$$L(T) = \exp\left[C - g\left(\sqrt{\pi}\frac{T_c}{T} Erfi\left(\frac{T_c}{T}\right) + 1 - e^{(T_c/T)^2}\right)\right],$$

Andreev (2009)

The dots are from lattice simulations by Gupta et al (2008). The normalization constant C = 0.10.

– Typeset by $\ensuremath{\mathsf{FoilT}}_{E}\!X$ –

Thermodynamics

And reev (2007)

The entropy density

$$s(T) = s_0 T^3 \exp\left(-\frac{1}{2}\frac{T_c^2}{T^2}\right).$$

The speed of sound

The solid curve represents the lattice result by Karsch et al (1995).

The preasure

$$p(T) \approx \frac{1}{4} s_0 T^4 \left(1 - \frac{T_c^2}{T^2} \right).$$

it is normalized at $T = T_c$ as $p(T_c) = 0$.

Rob Pisarski observation "Fuzzy bag" (2006) based on the data of Karsch (1995)

Field Strength Correlators

And reev (2010)

The two-point field strength correlator (in four-dimensional Euclidean space)

$$D_{\mu\nu,\rho\tau}(r) = \langle tr \left[G_{\mu\nu}(0) U_P(0,r) G_{\rho\tau}(r) U_P(r,0) \right] \rangle$$

For large r (separation of the field strength operators)

$$D_{\mu\nu,\rho\tau}(r) \sim P_{\mu\nu,\rho\tau} e^{-\frac{r}{\lambda}}$$

with λ the correlation length

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Conclusions

• Black hole and string techniques in higher dimensions are useful at energies below the GeV scale in d = 4

• QCD is a right place to try string theory.

Lattice and experimental data are available

- Mean string theory description
- No quarks. It is still far from the real world.
- Can string theory compete with the lattice?

(Strings vs Blue Genes)