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Motivations for this work: 

Modeling loss-free energy transportation in 
biomolecular aggregates

• Time scale: s.
• Energy scale: 0.1-0.3 eV.
• Transfer distance: 10-100 Ǻ
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Reasons for soliton propagation  mechanism
along tightly binding molecular subunits

• Chemical processes in biological systems are well 
understood on structural and thermodynamics levels. 

• The reactive centers are linked by molecular chains of 
length of about 100 Ǻ . The energy quantum of order 
of 0.1-0.2 eV is produced within one reactive center 
and is transported without loss to next reactive site 
along the chain with many (of order ) 
vibrational degrees of freedom. 

• In order the energy transport does not accompanied 
by energy dispersion over all internal vibrations, the 
soliton mechanism has been suggested.
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Molecular chains consisting of 
hydrogen bonded subunits 

• In harmonic limit the initial energy is rapidly distributed 
over all vibrations and cannot be transported. Non-linear 
coupling is introduced as a result of the strong 
anharmonicity of hydrogen bonds.

• If the coupling strength exceeds a certain threshold, 
solitons can be formed, suppressing energy distribution.

• A.S.Davydov. Biology and Quantum Mechanics. 
Pergamon. N.Y.1982.

• D.Hochstrasser, F.G.Mertens, H.Buttner. Phys.Rev. A. 
40(1989)2602.

• D.Hennig. Phys.Rev. E 61(2000)4550.



Energy transfer through 1D chain 
of CH2- fragments 

Ballistic regime has been discovered for heat pulse propagation Ballistic regime has been discovered for heat pulse propagation 
induced by instant induced by instant vibrationalvibrational excitation of the end fragment of long excitation of the end fragment of long 
linear molecule. Propagation time is proportional to the chain llinear molecule. Propagation time is proportional to the chain length, ength, 
about about s per one CHs per one CH22 ––fragment. fragment. 
Forward and backward propagation, involving reflection from the Forward and backward propagation, involving reflection from the 
chain ends results in phonon echo formationchain ends results in phonon echo formation ((partial recovery of the partial recovery of the 
initial state population)initial state population)
The echo is broadened when the coupling between the chain and itThe echo is broadened when the coupling between the chain and its s 
environment increases.  environment increases.  
D.DlottD.Dlott, et al. Proc. Nat. , et al. Proc. Nat. Acad.SciAcad.Sci USA 104(2007)14190,USA 104(2007)14190,
Science. 317(2007)787.Science. 317(2007)787.
No hydrogen bonds, no highly No hydrogen bonds, no highly anharmonicanharmonic vibrations!vibrations!
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Normal mode progressions in vibrational spectra 
of large molecules and nanosystems

Object Molecule Spectral 
range 

(сm 1 ) 

Vibration 
 type 

Mean 
spacing 

(сm 1 ) 

Progression 
shifts  

(сm 1 ) 
Membranes  Phospho-lipides* 1150-1400 Wagging 16-18 3-8 
Mono-layers  CH2-chains 710-1010 

1180-1310 
Rocking 
Wagging 

20-22 
20-26 

- 
- 

Single-well 
nano-tubes 

Zigzag and 
armchair 

configurations 
 

140-230 Radial  
breathing 

15 
15 

5 

Photosystem I Fe-Porphirin 690-1650 Of-plane 
distortions, 

Eu 
 

69 - 

- Fullerenes  
C60 -C70  

1180-1580 Skeleton 
distortions 

18 - 

 



Model Hamiltonian
• The chain consisting of (2N+1) two-level sites
with the same nearest neighbor interaction. 
The site in the middle,n=0, is occupied by impurity.

• The Hamiltonian (1) has the Caldeira-Leggett form 
and describes an interaction between the initial state 
(impurity center excitation) and reservoir with the 
dense discrete spectrum (half-chains)
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Secular equation
• Within site representation, the matrix of Hamiltonian 

is reduced to symmetric  tridiagonal Jacobi matrix
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Reservoir eigenstate representation
• Secular determinant has one none-zero line and one none-zero 

column describing energy dependent impurity-reservoir coupling  
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Comparison with Zwanzig’s model
• The simplest form of initial state-reservoir 

Hamiltonian corresponds to Zwanzig’s model: 
equidistant spectrum and the same coupling for all 
reservoir states.

• In contrast to Zwanzig’s model in the chain case: 
density of non-perturbed reservoir states increases 
and coupling strength decreases from the center to 
zone boundaries.

• Nevertheless, the main feature of Zwanzig’s model is 
preserved:  One eigenvalue of  coupled system lies in 
each interval between levels of non-perturbed 
reservoir. 



Secular equation for generalized 
Zwanzig’s model

• The correction functions taking into account energy dependent spacings
and couplings can be introduced in secular equation to generalize  
Zwanzig’s model

• Coupling constant Г >>1 is define the energy range where reservoir states 
mainly contributed impurity-reservoir interaction are located 

• Correction functions are close to 1 near the zone center

• Eigenvalues

        
1

,
1

,0cot12 





NN
ffF 

   2

2

1
1

C
CN





 
u
uufuuuf sin)(,cot 21 

 nnn f  22



Equations of motion
• Wave function is expanded over eigen-functions of 

impurity and reservoir nonperturbed states with time 
dependent amplitudes

• Impurity amplitude is given by trigonometric series 
over eigenvalues which Fourier coefficients are equal 
to residues in the poles being the roots of secular 
eqution
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Recurrence cycles for Zwanzig’s model

• Recurrence cycles result from  discreteness of reservoir 
spectrum. Their period is defined by the mean inter-level 
spacing.

• Partial recovery of initial state (echo) appears in each recurrent 
cycle.

• The number of components and the total width of echo 
increase with increasing cycle number.

• There exists the critical cycle number for mixing of adjacent 
cycle components.

• As result of mixing regular-chaotic transition occurs in long-
time evolution. 

• V.A.Benderskii, L.A.Falkovskii, E.I.Kats. 
• JETPL 88(2008)338;JETP108(2009)160; 109(2009)505. 



Time-dependent impurity amplitudes
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State vector   210 ,....,, Naaa   obeys Heisenberg equations ( )1  
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Impurity amplitude is ( 0E ) 
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Coupling determines reservoir states which contribution dominates in impurity-reservoir 
interaction. If 212 С , correction functions are close to 1 for these states and the impurity 
evolution is close to those for Zwanzig’s model. The contribution of states situated close the 
zone boundaries become significant when 212 C . 



Recurrence cycles for 1D chain problem

• Generating  function representation for first-order Bessel function 

• The coefficients are only non-zero in the periodically repeated intervals 

• As a result, the impurity amplitude is partially recovered in each recurrence cycle. 
Period of recurrence cycles is almost independent of coupling and is defined by the 
chain length  

• Each recurrence cycle corresponds to propagation of excitation wave forward and 
backward of half-chains.   
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Partial amplitudes of recurrence cycles 
• Since coefficients are non-zero in the narrow 

periodically repeated intervals

• an impurity amplitude is expanded into series over 
partial amplitudes of recurrence cycles
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Impurity amplitude evolution,
C^2=0.1;0.25;0.5;0.75;0.95;1.1



Impurity amplitude evolution.
C^2=0 -0.25.

• Alike Zwanzig’s model, the number of echo 
components  and their total width increase with 
recurrence cycle number. Evolution becomes more 
and more complicated with increasing cycle number.
The intervals of non-zero coefficients  Sm decreases 
with increasing coupling. The number of recurrence 
cycles with regular dynamics grows with coupling 
increase.
The mean population of impurity in recurrence cycle 
is equal to 1/Г independently  of cycle number.



Impurity amplitude evolution, 
C^2=[0.4,0.8].

• About only three non-zero coefficients  Sm exist in 
each recurrence cycle

• Evolution remains regular in recurrence cycle which 
number exceeds that for Zwanzig’s model.
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Regular-stochastic-like transition
• Alike Zwanzig’s model, there exists a critical number 

(sc)  of recurrence cycle for overlap of the leading 
echo components of adjacent cycles. When s>>sc, 
evolution becomes stochastic-like  due to even small 
fluctuations, inherent for any real system.

• Critical cycle number has a maximum at intermediate 
coupling 
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Long-time evolution of site amplitudes
• Although site amplitudes demonstrate quite irregular evolution 

beginning even from the first recurrence cycle, the impurity 
amplitude evolution remains regular. 



Excitation wave propagation, C^2=0.1



Excitation wave propagation, C^2=0.5



Conclusion
• The model demonstrates the multiple  loss-free 

forward and backward propagation of 
excitation along 1D chains with nearest 
neighbor interaction.

• Strong dependence of evolution on coupling 
constant enable us to reproduce experimentally 
observed ballistic regimes of thermal pulse 
propagation through long linear molecules.  

• Regular-stochastic-like transition is predicted 
at  the critical cycle number, which depends on 
coupling constant.


