Magnetic quantum oscillations and angular dependence of magnetoresistance in layered high-Tc superconducting materials

Pavel D. Grigoriev

L. D. Landau Institute for Theoretical Physics RAS

RUSSIAN ACADEMY OF SCIENCES

L.D Landau INSTITUTE FOR THEORETICAL PHYSICS

The goal:

1.To derive analytical formulas for MQO and AMRO, convenient for interpretation of experimental data.
2.To systemize the known previous results and to correct them or specify their applicability regions.
3.To perform numerical calculations to fit the data and to obtain information about high-Tc superconductors.

P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010)

Motivation

All known high-Tc superconductors are layered quasi-2D compounds. The detailed knowledge of electron dispersion is very important for understanding the mechanisms of superconductivity: (How FS depends on doping and temperature? How close is SC Tc maximum to the quantum phase transition? How good is FS nesting? What are the Fermi arcs and hot spots?)

General opinion is that cuprate high-Tc superconducting materials are not metals and they do not possess Fermi surface. Hence, the observation of magnetic quantum oscillations or of typical magnetoresistance is impossible. This is not true as many recent experiments show!

The only alternative to MQO to get experimental information about the electron spectrum is the angle-resolved photoemission spectroscopy (ARPES).

ARPES (Angle resolved photoemission spectroscopy)

Main idea:

 $E = \hbar\omega - E_k - \phi$

 E_k = kinetic energy of the outgoing electron — can be measured. $\hbar\omega$ = incoming photon energy - known from experiment, φ = known electron work function. **Angle resolution** of photoemitted electrons gives their momentum.

Rev.Mod.Phys. 75, 473 (2003)

The photocurrent intensity is proportional to a one-particle spectral function
multiplied by the Fermi function: $I(\mathbf{k}, \omega) = A(\mathbf{k}, \omega)f(\omega)$ $A(\omega, \mathbf{k}) = -\frac{1}{\pi} \frac{\Sigma''(\omega)}{(\omega - \varepsilon(\mathbf{k}) - \Sigma'(\omega))^2 + \Sigma''(\omega)^2}$ Therefore can find out
information about E(k)

Drawback 1: Only surface electrons participate!

Motivation

Motivation ARPES data and Fermi-surface shape

The Fermi surface of near optimally doped $Bi_2Sr_2CaCu_2O_{8+\delta}$ (a) integrated intensity map (10-meV window centered at *EF*) for Bi2212 at 300 K obtained with 21.2-eV photons (HeI line); (b),(c) superposition of the main Fermi surface (thick lines) and of its (p,p) translation (thin dashed lines) due to backfolded shadow bands; (d) Fermi surface calculated by Massidda *et al.* (1988).

Drawback 2: Ambiguous interpretation.

Motivation Phase diagram of high-Tc cuprate SC. High Tc and quantum phase transition

Motivation Quantum oscillations from Fermi arcs

Figure 4 | Exact diagonalization of the lattice model. a, DOS as a function of energy in the FAM in zero (red) and non-zero (black) magnetic field corresponding to two vortices in a 20 × 20 magnetic unit cell. In YBCO with lattice constant $a_0 \simeq 4$ Å this corresponds to the physical field of about 64 T. The parameters used are as follows: $\Delta_0/t = 1$, $\epsilon_F/t = -1.3$, $\nu = 0.6$ and $\tau = 0.1$. **b**, The low-energy DOS for the same parameters, in detail. **c**, The power spectrum of the low-energy DOS showing dominant frequency of oscillations $34t^{-1}$ and its second harmonic. **d**, DOS at the Fermi level as a function of ϵ_F .

Figure 4 | Fermi surface reconstruct

Figure 4 | **Fermi surface reconstruction in YBa₂Cu₃O_{6.51}. a**, Schematic Fermi surface reconstruction for a commensurate ordering wavevector $\mathbf{Q} = (\pi, \pi)$ and nominal doping $p_{nom} = 0.1$ in the extended Brillouin zone

S.E. Sebastian, N. Harrison, E. Palm et al., NATURE 454, 200 (2008)

Fermi Surface of Superconducting LaFePO Determined from Quantum Oscillations

A.I. Coldea,¹ J.D. Fletcher,¹ A. Carrington,¹ J.G. Analytis,² A.F. Bangura,¹ J.-H. Chu,² A.S. Erickson,² I.R. Fisher,² N.E. Hussey,¹ and R.D. McDonald³

Lifshitz-Kosevich formula for MQO

Quantum oscillations of magnetization (de Haas – van Alphen effect)

$$\mathbf{M} \propto \frac{\mathbf{eF}}{\sqrt{\mathbf{HA''}}} \sum_{p=1}^{\infty} p^{-3/2} \sin \left[2\pi p \left(\frac{\mathbf{F}}{\mathbf{H}} - \frac{1}{2} \right) \pm \frac{\pi}{4} \right] \mathbf{R}_{\mathrm{T}}(p) \mathbf{R}_{\mathrm{D}}(p) \mathbf{R}_{\mathrm{S}}(p),$$

where the dHvA fundamental frequency

$$F = \frac{chA_{extr}}{(2\pi)e},$$

The temperature damping factor

$$R_{T}(p) = \pi \kappa p / \sinh(\pi \kappa p),$$

$$\kappa \equiv 2\pi k_B T / h\omega_C, \ \omega_C = eH / m^* c.$$

The scattering (Dingle) damping factor

$$R_{D}(p) = \exp\left(\frac{-\pi}{\tau\omega_{C}}\right), \ \tau = h/(2\pi)^{2}k_{B}T_{D} \text{ is}$$

The spin factor $R_{s}(p) = \cos\left(\frac{\pi pgm^{*}}{2m_{0}}\right).$

is the mean free scattering time.

3D compounds in tilted magnetic field

Fermi surface of gold

Extremal cross-section area of FS measured at various tilt angles of magnetic field allows to obtain the total Fermi surface of metals.

MQO is a traditional tool to study FS geometry

A4

Problems with MQO in high-Tc materials

- High-Tc cuprate are very dirty (doping is necessary for SC), and the MQO signal is weak and noisy.
- The Fermi surface in these materials depends on doping level, temperature and magnetic field => much more work is need.
- **3. Magnetic field must be strong enough to suppress SC.**

Introduction

Layered quasi-2D metals

A5

(Examples: heterostructures, organic metals, high-Tc superconductors)

Harmonic expansion of Fermi momentum

$$k_F(\phi, k_z) = \sum_{\mu,\nu \ge 0} k_{\mu\nu} \cos(\nu k_z c^*) \cos(\mu \phi + \phi_\mu).$$

The coefficients $k_{\mu\nu}$ fall down rapidly with increasing μ and ν : $k_{\mu0}/k_{00} <<1, k_{0\nu}/k_{00} <<1, k_{\mu\nu}/k_{00} \sim k_{\mu0}k_{0\nu}/k_{00}^{2}$.

Illustration how different harmonics affect the FS shape

[C. Bergemann et al., Adv. Phys. (2003)]

Harmonic expansion for the angle-dependence of FS crosssection area (MQO frequency) in Q2D layered metals.

Harmonic expansion of Fermi momentum

$$k_F(\phi, k_z) = \sum_{\mu,\nu \ge 0} k_{\mu\nu} \cos(\nu k_z c^*) \cos(\mu \phi + \phi_\mu).$$

Harmonic expansion of the angular dependence of FS cross-section area

$$A(k_{z0},\theta,\varphi) = \sum_{\mu,\nu} A_{\mu\nu}(\theta) \cos\left[\mu\varphi + \delta_{\mu}\right] \cos\left(\nu c^* k_{z0}\right),$$

We only need to write down the relation between the first few coefficients $k_{\mu\nu}$ and $A_{\mu\nu}$!

First-order harmonic expansion result. Why it is bad?

$$A^{(1)} = \frac{2\pi k_{00}}{\cos \theta} \sum_{\mu,\nu \ge 0} '(-1)^{2\mu} k_{\mu\nu} \cos\left[\mu \phi + \phi_{\mu}\right] \cos\left(\nu k_{z0} c^{*}\right) J_{\mu}\left(\nu \kappa\right)$$
[C. Bergemann et al., PRL 84, 2662 (2000).]

Since $J_{\mu}(0)=0$ for $\mu \neq 0$, all terms ${}^{\sim}k_{\mu0}$ vanish in $A^{(1)}$. Hence, the ϕ -dependence of the cross-section area $A(\theta, \phi)$ starts from the term $k_{\mu1}$, which is of the same order as the neglected second-order term $k_{\mu0}k_{0,1}/k_F$.

Therefore, the first-order result in $k_{\mu\nu}$ for the cross-section area does not give the correct ϕ -dependence even in the lowest order!

In fact, the error is very large.

For the in-plane Fermi surface with tetragonal symmetry (as in high-Tc cuprates) the amplitude of the φ -oscillations of the first Yamaji angle is 6 times less than the exact result.

H4

<u>New result 1A:</u> Corrected analytical formula for the main φ-dependent term in the cross-section area (straight interlayer hopping)

K.

Fermi surface

This formula is obtained in the second order in coefficients k_{uv} from the Fermi momentum expansion

$$k_F(\phi, k_z) = \sum_{\mu,\nu \ge 0} k_{\mu\nu} \cos(\nu k_z c^*) \cos(\mu \phi + \phi_\mu).$$

The main ϕ -dependent term in the cross-section area is

$$A^{(1)} = \frac{4\pi k_F^2 t_c C_1}{E_F} \frac{\cos\left[c^* k_{z0}\right]}{\cos\theta} \times \qquad \text{these terms were absent}$$
$$\times \left\{ J_0\left(\kappa\right) + \beta\left(-1\right)^{m/2} \cos\left(m\phi\right) \left[(1 + \beta_1/\beta + m) J_m\left(\kappa\right) - \kappa J_{m+1}^{\bullet}\left(\kappa\right) \right] \right\}$$
where $\beta \equiv k_{\mu 0}/k_{00}, \ \beta_1 = k_{\mu 1}/k_{01}, \ \kappa \equiv c^* k_F \tan\theta$ For the typical electron dispersion $\varepsilon\left(k,\phi\right) = k^{\alpha}g\left(\phi\right), \beta_1/\beta = 1$

<u>New result 1B:</u> Corrected analytical formula for the main ϕ -dependent term in the cross-section area inclined (ϕ -dependent) interlayer hopping

Fermi momentum $k_F(\phi, k_z) = \sum_{\nu \ge 0} k_{\nu}(\phi) \cos(\nu k_z c^*)$ is given by

where
$$\begin{aligned} k_0(\phi) &\approx (1 + \beta \cos 2m\phi) k_F, \\ k_1(\phi) &\approx \frac{2t_c}{E_F} k_F C_1 \sin (m\phi) (1 + \beta_1 \cos 2m\phi) \end{aligned}$$

Fermi surface

The main ϕ -dependent term in the cross-section area in the second order in coefficients $k_{\mu\nu}$ is these terms

$$A(k_{z0},\theta,\varphi) \approx \frac{\pi k_F^2}{\cos\theta} + \frac{4\pi k_F^2 t_c C_1}{E_F \cos\theta} \cos \left[c \cdot k_{z0}\right] \times$$
 were absent

$$\times \left\{ J_m\left(\kappa\right) \sin\left(m\varphi\right) + \frac{\beta}{2} \left(-1\right)^{3m/2} \left[\left(1 + \frac{\beta_1}{\beta} + 3m\right) J_{3m}\left(\kappa\right) - \kappa J_{3m+1}\left(\kappa\right) \right] \sin\left(3m\varphi\right) \right\}$$
 where $\beta \equiv k_{\mu0}/k_{00}, \beta_1 = k_{\mu1}/k_{01}, \ \kappa \equiv c^* k_F \tan\theta$
For the typical electron dispersion $\varepsilon\left(k,\phi\right) = k^{\alpha}g\left(\phi\right), \ \beta_1/\beta = 1$

The difference between first- and second-order results is very large.

For the in-plane Fermi surface with tetragonal symmetry (as in high-Tc cuprates) the amplitude of the φ -oscillations of the first Yamaji angle is 6 times less than the exact result.

What results obtained from the first-order harmonic expansion are valid and what can be corrected ?

Extracted warping parameters k [10⁷m⁻¹] of the three Fermi surface sheets of Sr₂RuO₄ [data from C. Bergemann et al., Adv. Phys. (2003).]

Why do we need experiments to get the FS geometry. If band-structure calculation are enough?

Sr₂RuO₄

Table 9. Warping parameters k_{µν} from table 4, compared with LDA band structure calculations. The units are in 10⁷ m⁻¹, as usual. For more details, refer to the text.

Sheet	Parameter	DHvA	LDA (Oguchi)	LDA (Singh)
α	$\rightarrow k_{00}$	304	328.2	334.4
	$\xrightarrow{K_{40}}$	- 10	- 22.0	- 27.0
	K02	0.31	0.9	-1.0
	k_{21}	1.3	0.3	0.8
	k ₄₂	-1.0	2.1	2.1
β	$\longrightarrow k_{00}$	622	653.1	649.4
	$\rightarrow k_{40}$	-45	- 43.1	- 45.0
	$\longrightarrow k_{01}$	3.8	8.5	9.6
	k_{02}	small	- 2.9	-2.8
	k_{41}	- 0.6	- 1.8	-4.0
	k_{42}	small	1.0	1.9
γ	$\longrightarrow k_{m}$	753	723.5	724.0
		small	- 3.7	0.4
	k_{01}	small	- 1.2	-1.5
	$\longrightarrow k_{02}$	0.53	2.0	1.9
	k41	small	- 3.3	-1.9
	k ₄₂	0.5	0.7	-0.4

Application of the obtained formulas to analyze MQO and angular dependence of background MR

The above formulas can be used to:

- 1. Determine the optimal magnetic field direction for the observation of the φ -dependence of MQO frequency.
- 2. Extract the Fermi-surface shape and electron dispersion from the angular dependence of the MQO frequency.
- 3. Determine the optimal magnetic field direction for the observation of beats of MQO. Their observation mean the existence of 3D Fermi surface.
- 4. Determine the optimal magnetic field direction for the observation of Yamaji angles and to extract electron dispersion parameters from the φ -dependence of the Yamaji angles.
- 5. Check the numerical fittings when the large number of fitting parameters makes the numerical procedure to be ambiguous.

Problems with the standard (L-K) description of quasi-2D magneotresistance oscillations

Phase shift of beats between MQO of conductivity and magnetization in the organic metal β-(BEDT-TTF)IBr₂

Slow oscillations in β -(BEDT-TTF)IBr₂ and other q2D metals, 10-year puzzle!

A8

A6

Magnetic quantum oscillations in quasi-2D compounds

Quasi-2D compounds include heterostructures, layered organic metals, intercalated graphite compounds, high-Tc cuprates and many others.

beats

Electron dispersion in the tight-binding approximation $\epsilon(n,p_z)=\hbar\omega_c(n+1/2)+2t\cos(k_zd), t<<E_F.$

ħωc<4t<<E_F

The dHvA frequency is related to the extremal cross section of the Fermi surface as $F_{dHvA} = c\hbar A_{ext} / 2\pi e$

Two extremal cross sections of the Fermi surface => two close fundamental frequencies in MQO: $M \sim sin(2\pi(F-\Delta F)/B) + sin(2\pi(F+\Delta F)/B) = 2sin(2\pi F/B) cos(2\pi\Delta F/B)$

A9

The theory of magnetic quantum oscillations in Q2d and the quantitative description of the slow oscillations and the phase-shift of beats has been given in the papers:

1. P.D. Grigoriev, M.V. Kartsovnik, W. Biberacher, N.D. Kushch, P. Wyder, "Anomalous beating phase of the oscillating interlayer magnetoresistance in layered metals", Phys. Rev. B 65, 60403(R) (2002).

2. M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher, N.D. Kushch, P. Wyder, "Slow oscillations of magnetoresistance in quasi-twodimensional metals", Phys. Rev. Lett. 89, 126802 (2002).

3. P.D. Grigoriev, "Theory of the Shubnikov-de Haas effect in quasitwo-dimensional metals", Phys. Rev. B 67, 144401 (2003).

Main idea: the traditional expansion (in the Lifshitz-Kosevich formula) in the small parameter - the ratio of the Landau level separation and the band width, $h\omega_c/t_z$, is not valid in quasi-2D metals because the band width in k_z in q2D metals is too small.

What to do when the harmonics do not fall down rapidly with increasing their order?

$$k_F(\phi, k_z) = \sum_{\mu,\nu \ge 0} k_{\mu\nu} \cos\left(\nu k_z c^*\right) \cos\left(\mu \phi + \phi_\mu\right).$$

For elongated in-plane Fermi surface $\beta = k_{20}/k_{00} \sim 1$.

Yamaji angles for elliptic in-plane FS

axially-symmetric Fermi surface

Yamaji angles θ_m are known. Being independent of ϕ , they satisfy the equation:

$$J_0\left(c^*k_F\tan\theta_m\right) = 0$$

Substituting azimuth angle after the dilation, $\tan \varphi_1 = \lambda \tan \varphi_1$, we obtain the new Yamaji angles:

elliptic in-plane Fermi surface

The magnetic field direction $\mathbf{n} \to \Lambda_x \left(\mathbf{n} \right) = \frac{\left(n_x / \lambda, n_y, n_z \right)}{\sqrt{\left(n_x / \lambda \right)^2 + n_y^2 + n_z^2}}.$

 $=\overline{\sqrt{\lambda^2\cos^2\varphi_1+\sin^2\varphi_1}}$

New Yamaji angle is ϕ -dependent:

 $\frac{\tan \theta_{Yam}^*}{\tan \theta_{Yam}} = \frac{\sqrt{n_x^2/\lambda^2 + n_y^2}}{n_z \tan \theta_{Yam}} = \sqrt{\frac{\cos^2 \varphi}{\lambda^2}}$ $\frac{\tan \theta_{Yam}^*}{1}$

 $\tan \theta_{Yam}$

$$\frac{\cos^2 \varphi}{\lambda^2} + \sin^2 \varphi.$$

F5

New result 2: Exact formula for the φ-dependence of Yamaji angles for the elliptic in-plane Fermi surface:

For the elliptic Fermi surface $\varepsilon\left(k_x,k_y
ight)\equiv k_x^2/2m_x+k_y^2/2m_y$

the Yamaji angles θ_n are given by the equation: $J_0 \left[c^* p_B^{\max} \left(\phi \right) \tan \theta_n \right] = 0.$ (3)

where
$$p_B^{\max} = \sqrt{(p_1 \cos \phi)^2 + (p_2 \sin \phi)^2}$$
,
and $p_1^2 = 2m_x \varepsilon_F$ and $p_2^2 = 2m_y \varepsilon_F$.

For the low-symmetry electron dispersion (triclinic or monoclinic with the elongated FS), this formula allows to extract the ratio of the main axes of the FS ellipse (or how elongated FS is).

max

Comparison of the new analytical formula for elliptic FS with the numerical results for other shapes of FS

Conclusion: For any elongated FS it gives good agreement

Very elongated but not elliptic Fermi surface:

Red line – result of the new formula, it almost coincides with exact result (blue line); Green line – new harmonic expansion result; Magenta – old harmonic expansion result;

Comparison of the analytical formulas with numerical results for FS with tetragonal symmetry

Conclusion: formula fails for tetragonal or hexagonal symmetries, where harmonic expansion is rather accurate.

Comparison with previous results

New formula for the Yamaji angles

$$J_0\left[c^* p_B^{\max}\left(\phi\right) \tan \theta_n\right] = 0.$$

approximately coincides with the previous result of Yakovenko:

$$|\tan\theta| = [\pi\hbar(n - 1/4) \pm (\mathbf{p}_{||}^{\max} \cdot \mathbf{u})]/p_B^{\max}d \quad (4)$$

The derivation of (4) is not applicable, but the formula works well for many compounds!

This explains why Eq. (4) was successfully used to determine the elongation parameters of the Fermi surface in organic metals. **Derivation of the formula (1)** in Ref. M. V. Kartsovnik, V. N. Laukhin, S. I. Pesotskii, I. F. Schegolev, V. M. Yakovenko, J. Phys. I 2, 89 (1992).

At $\omega_c \tau >>1$ from the S-T integral $\sigma_{zz}^{(0)} = \sigma_{HH}^{(0)} \sin^2 \varphi \propto < \bar{v}_z^2 >$

where the velocity, averaged over the electron orbit

$$\bar{v}_{z} = \overline{\partial E/\partial p_{z}} = \frac{2td}{T\hbar} \int_{0}^{T} d\xi \sin \left\{ \left[p_{z}(\xi)d + \left(p_{\parallel}(\xi)u \right) \right] / \hbar \right\} (2)$$
and $p_{z}(\xi) = P_{z} - p_{H}(\xi) \cot \varphi$,
The integral over is assumed to be rapidly
oscillating and is taken in the saddle-point
approximation, which gives
$$\bar{v}_{z}(P_{z}) \propto \sin \left(\frac{P_{z}d}{\hbar} \right) \cos \left(\frac{|dp_{H}^{(\max)} \cot \varphi - (p_{\parallel}^{(\max)}u)|}{\hbar} - \frac{\pi}{4} \right)$$
This gives the condition for the N-th Yamaji angle
(minimum of averaged velocity):

$$|\cot \varphi_c| = [\pi \hbar (N - 1/4) \pm (\mathbf{p}_{\parallel}^{(\max)} \mathbf{u})]/p_H^{(\max)} d, \quad (1)$$

F3

Problem: the integral (2) is not rapidly oscillating even at high tilt angle as in the first Yamaji angle, where it makes only one oscillation.

First analytical result on the azimuth-angle dependence F^2 of magnetoresistance in quasi-2D metals $R_{zz}(\theta,\phi)$

[M. V. Kartsovnik, V. N. Laukhin, S. I. Pesotskii, I. F. Schegolev, V. M. Yakovenko, J. Phys. I 2, 89 (1992).]

The ϕ -dependent Yamaji angles (maxima of $R_{zz}(\theta,\phi)$) are given by equation:

$$|\tan \theta| = [\pi \hbar (n - 1/4) \pm (\mathbf{p}_{||}^{\max} \cdot \mathbf{u})]/p_B^{\max} d$$

where the sign in the \pm is the same as the sign of tan θ and the meaning of $\mathbf{p}_{\parallel}^{\max}$ and p_{B}^{\max} is illustrated in Figure 4: $\mathbf{p}_{\parallel}^{\max}$ is the in-plane Fermi momentum whose projection on the field rotation plane, determined by angle φ , takes the maximum value, denoted as p_{B}^{\max} . From the periods of AMROs measured at various azimuthal angles φ , one can determine $p_{B}^{\max}(\varphi)$ and graphically deduce the shape and size of the FS cross section in the $p_{x}p_{y}$ plane.

This simple formula is widely used to extract the in-plane FS shape

Other results (AMRO):

1. Derivation and investigation of the applicability region of the relation between the angular dependence of magnetoresistance and of the FS cross-section area at $\omega_c \tau >>1$ in quasi-2D compounds (t_c/E_F<<1):

$$\sigma_{zz}\left(\theta,\phi_{0}\right) = \frac{e^{2}\tau\cos\theta}{8\pi^{4}\hbar^{2}}\int\frac{dk_{z0}}{m_{H}^{*}}\left(\frac{\partial A\left(k_{z0},\theta,\phi_{0}\right)}{\partial k_{z0}}\right)^{2}.$$

2. Angular magnetoresistance oscillations and their fit by numerical calculations:

Summary (MQO) P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010).

Analytical formulas are obtained for the θ, ϕ -dependence of the crosssection area (MQO frequency), which can be used to extract the FS shape from experimental data on MQO in various layered high-Tc superconductors. We also suggests the optimal B-direction for the observation of the angular dependence of MQO.

1. Harmonic expansion:

$$k_F(\phi, k_z) = \sum_{\mu,\nu \ge 0} k_{\mu\nu} \cos(\nu k_z c^*) \cos(\mu \phi + \phi_\mu) .$$
$$A(k_{z0}, \theta, \varphi) = \sum_{\mu,\nu} A_{\mu\nu}(\theta) \cos[\mu \varphi + \delta_\mu] \cos(\nu c^* k_{z0})$$

2. The formula for the ϕ - dependence of Yamaji angles for elliptic FS, which also works well for any elongated FS.

0.5

-0.5

-1.0 -1.5 2

$$J_0\left[c^* p_B^{\max}\left(\phi\right) \tan \theta_n\right] = 0.$$

Applicable to elliptic and elongated in-plane FS:

Thank you for the attention!

Introduction Background (classical) magnetoresistance in normal 3D metals (strong fields)

In strong magnetic field the magnetoresistance depends on the shape and topology of the Fermi surface (FS), because at $\omega_c \tau >>1$ the electrons can encircle the FS before being scattered.

Introduction Background magnetoresistance in q2D. Shockley tube-integral formula for conductivity.

A10

The convenient coordinates for electrons in magnetic field in momentum space are: energy E, momentum along magnetic field k_H and the phase along the closed electron trajectory ϕ)

Kinetic equation for electron distribution function g in magnetic field in the τ -approximation in Q2D metals is $e\mathbf{E} \cdot \mathbf{v} \left(-\frac{\partial f^0}{\partial \mathscr{G}}\right) == \frac{g}{\tau} + \omega_H \frac{\partial g}{\partial \phi}$.

The solution of this equation is

$$g(\mathscr{E}, k_{\mathrm{H}}, \phi) = \frac{e}{\omega_{H}} \left(-\frac{\partial f^{\mathbf{0}}}{\partial \mathscr{E}} \right) \int_{-\infty}^{\phi} \mathbf{v} \left(\mathscr{E}, k_{\mathrm{H}}, \phi \right) e^{(\phi'' - \phi)/\omega_{H} \tau} d\phi'' \cdot \mathbf{E}.$$

Integration of this distribution function over the momentum space gives the Shockley tube-integral formula for conductivity

$$\sigma_{\alpha\beta}(\theta,\phi) = \frac{e^2}{4\pi^3\hbar^2} \int dk_{z0} \frac{m_H^* \cos\theta /\omega_H}{1 - \exp\left(-2\pi/\omega_H\tau\right)} \\ \times \int_0^{2\pi} \int_0^{2\pi} v_\alpha\left(\psi,k_{z0}\right) v_\beta\left(\psi - \psi',k_{z0}\right) e^{-\psi'/\omega_H\tau} d\psi' d\psi.$$

Introduction Background magnetoresistance in q2D. Shockley tube-integral formula for conductivity.

A10

The convenient coordinates for electrons in magnetic field in momentum space are: energy E, momentum along magnetic field k_H and the phase along the closed electron trajectory ϕ)

Kinetic equation for electron distribution function g in magnetic field in the τ -approximation in Q2D metals is $e\mathbf{E} \cdot \mathbf{v} \left(-\frac{\partial f^0}{\partial \mathscr{G}}\right) == \frac{g}{\tau} + \omega_H \frac{\partial g}{\partial \phi}$.

The solution of this equation is

$$g(\mathscr{E}, k_{\mathrm{H}}, \phi) = \frac{e}{\omega_{H}} \left(-\frac{\partial f^{\mathbf{0}}}{\partial \mathscr{E}} \right) \int_{-\infty}^{\phi} \mathbf{v} \left(\mathscr{E}, k_{\mathrm{H}}, \phi \right) e^{(\phi'' - \phi)/\omega_{H} \tau} d\phi'' \cdot \mathbf{E}.$$

Integration of this distribution function over the momentum space gives the Shockley tube-integral formula for conductivity

$$\sigma_{\alpha\beta}(\theta,\phi) = \frac{e^2}{4\pi^3\hbar^2} \int dk_{z0} \frac{m_H^* \cos\theta /\omega_H}{1 - \exp\left(-2\pi/\omega_H\tau\right)} \\ \times \int_0^{2\pi} \int_0^{2\pi} v_\alpha\left(\psi,k_{z0}\right) v_\beta\left(\psi - \psi',k_{z0}\right) e^{-\psi'/\omega_H\tau} d\psi' d\psi.$$

Introduction

A12

Many papers are devoted to the analytical theory on the polar-angle θ-dependence of magnetoresistance and MQO frequency for the <u>axially-symmetric</u> electron dispersion

 $\epsilon(\mathbf{p}) = p_{\parallel}^{2}/2m_{\parallel} + 2t_{z} \cos(k_{z}d).$

Then Shockley tube integral

$$\sigma_{\alpha\beta}(\theta,\phi) = \frac{e^2}{4\pi^3\hbar^2} \int dk_{z0} \frac{m_H^* \cos\theta /\omega_H}{1 - \exp\left(-2\pi/\omega_H\tau\right)} \\ \times \int_0^{2\pi} \int_0^{2\pi} v_\alpha\left(\psi,k_{z0}\right) v_\beta\left(\psi - \psi',k_{z0}\right) e^{-\psi'/\omega_H\tau} d\psi' d\psi.$$

Introduction Geometrical interpretation of the A11 angular magnetoresistance oscillations in q2D

Conductivity (very roughly) is proportional to the mean square velocity integrated over the whole Fermi surface : $\sigma_{zz} \propto e^2 \tau \langle v_z^2 \rangle_{FS}$

$$v_z = \partial \varepsilon / \partial k_z \propto \partial A / \partial k_z,$$

where A is the cross-section area of the Fermi surface by the plane $\perp B$

Cross section area and the electron dispersion have strong k_z -dependence

Cross section area and the electron dispersion are almost k_z -independent

$$\frac{\text{Below I will derive}}{\text{that at } \omega_{c}\tau >>1} \sigma_{zz} \left(\theta, \phi_{0}\right) = \frac{e^{2}\tau\cos\theta}{8\pi^{4}\hbar^{2}} \int \frac{dk_{z0}}{m_{H}^{*}} \left(\frac{\partial A\left(k_{z0}, \theta, \phi_{0}\right)}{\partial k_{z0}}\right)^{2}$$

0 L

20

40

60

Ò

Angle (degrees)

20

data were taken at T = 4.2 K and H = 45 T. The different azimuthal orientations (±4°) of each polar sweep are stated relative to the Cu–O–Cu bond direction. The key features of the data are as follows: (1) a sharp dip in ρ_{\perp} at $\theta = 90^{\circ}$ for low values of ϕ , which we attribute to the onset of superconductivity at angles where $H_{c2}(\phi, \theta)$ is maximal, (2) a broad peak around **H**||*ab* ($\theta = 90^{\circ}$) that is maximal for $\phi \approx 45^{\circ}$, consistent with previous azimuthal AMRO studies in overdoped Tl2201 (ref. 16), (3) a small peak at **H**||*c* ($\theta = 0^{\circ}$), and (4) a second peak in the range $25^{\circ} < \theta < 45^{\circ}$ whose position and intensity vary strongly with ϕ . These last two features are the most critical for our analysis. Similar

N. E. Hussey et al., "A coherent 3D Fermi surface in a high-Tc superconductor", Nature 425, 814 (2003)

40

60

80

Difficulties with the numerical calculation of AMRO^{M7}

$$\sigma_{\alpha\beta}(\theta,\phi) = \frac{e^2}{4\pi^3\hbar^2} \int dk_{z0} \frac{m_H^* \cos\theta /\omega_H}{1 - \exp\left(-2\pi/\omega_H\tau\right)} \times \int_0^{2\pi} \int_0^{2\pi} v_\alpha \left(\psi, k_{z0}\right) v_\beta \left(\psi - \psi', k_{z0}\right) e^{-\psi'/\omega_H\tau} d\psi' d\psi.$$

The numerical calculation of the S-T integral is hard, because

1)At high tilt angle the FS cross section includes additional closed pockets due to multiple intersection with FS.

2)The integration variable ψ differs from the azimuth angle ϕ . This difference must be thoroughly taken into account.

3)At each step of 3D integration one needs to solve the nonlinear algebraic equation to determine k_z at the point on the FS intersection with the plane \perp B.

4)The calculation gives $\sigma_{zz}(\theta, \phi)$ for the known electron dispersion, while we need to solve the inverse problem. The fitting procedure takes too many fitting parameters and becomes ambiguous.

Can we avoid these complications?

Derivation of relation (5) between magnetoresistance B3 and FS cross-section area

We start from the Shockley tube integral:

$$\sigma_{\alpha\beta}(\theta,\phi) = \frac{e^2}{4\pi^3\hbar^2} \int dk_{z0} \frac{m_H^* \cos\theta /\omega_H}{1 - \exp\left(-2\pi/\omega_H\tau\right)} \\ \times \int_0^{2\pi} \int_0^{2\pi} v_\alpha\left(\psi,k_{z0}\right) v_\beta\left(\psi - \psi',k_{z0}\right) e^{-\psi'/\omega_H\tau} d\psi' d\psi$$

At $\omega_c \tau >>1$ it simplifies to

$$\sigma_{\alpha\alpha}\left(\theta,\varphi\right) = \frac{e^2}{4\pi^3\hbar^2} \int dk_{z0} \frac{m_H^*\cos\theta\,/\omega_H}{1-\exp\left(-2\pi/\omega_H\tau\right)} \left(\int_0^{2\pi} v_\alpha\left(\psi,k_{z0}\right)d\psi\right)^2.$$

The integral

$$I \equiv \int_{0}^{2\pi} d\psi v_{z} \left(\psi, k_{z0}\right) = \int_{0}^{2\pi} d\phi \frac{k_{F} \left(\phi, k_{z}\right)}{m_{H}^{*} \cos \theta} \frac{\partial k_{F} \left(\phi, E\right)}{\partial E} \frac{\partial E}{\partial k_{z}} = \int_{0}^{2\pi} d\phi \frac{k_{F} \left(\phi, k_{z}\right)}{m_{H}^{*} \cos \theta} \frac{\partial k_{F} \left(\phi, k_{z}\right)}{\partial k_{z}}$$

The derivative
$$\frac{\partial k_F(\phi, k_z)}{\partial k_z} = \frac{\partial k_F[\phi, k_z (k_{z0}, \phi)]}{\partial k_{z0} \cdot (\partial k_z / \partial k_{z0})} \quad \text{and } \frac{\partial k_z / \partial k_{z0} = 1 \text{ from}}{k_z = k_{z0} - k_F(\varphi + \phi', k_z) \tan \theta \cos \phi'}$$

Combining this we get
$$I = \int_0^{2\pi} \frac{d\phi}{m_H^* \cos \theta} \frac{\partial k_F^2(\phi, k_z)}{2\partial k_{z0}} = \frac{\partial A(k_{z0}, \theta, \varphi_0)}{\partial k_{z0} m_H^*}$$

New result 1: Derivation of relation between the angular dependence of magnetoresistance and of the FS cross-section area Its applicability region.

At $\omega_c \tau >>1$ (strong magnetic field and in pure samples) and $t_z << E_F$, the interlayer conductivity $\sigma_{zz}(\theta, \phi)$ is related to the k_z -dependence of the FS cross-section area A as

$$\sigma_{zz}\left(\theta,\phi_{0}\right) = \frac{e^{2}\tau\cos\theta}{8\pi^{4}\hbar^{2}} \int \frac{dk_{z0}}{m_{H}^{*}} \left(\frac{\partial A\left(k_{z0},\theta,\phi_{0}\right)}{\partial k_{z0}}\right)^{2}.$$
(5)

This result relates the calculations of the θ, ϕ - dependence of cross-section area with the magnetoresistance. The positions and the ϕ -dependence of the Yamaji angles are the same.

This relation works well even at $\omega_c \tau \sim 1$, as show numerical calculations.

Numerically calculated angular dependence of conductivity $\sigma_{zz}(\theta,\phi)$ for several $\omega_{c}\tau$ at two different azimuth angles.

These plots show that the relation between the angular dependence of magnetoresistance and of cross-section area works well at $\omega_c \tau > \approx 2$.

They also show that the saturation value of conductivity at $\theta \rightarrow \pi/2$ is strongly ϕ -dependent and can be used to extract the in-plane FS shape.

B2

Phase diagram of high-Tc cuprate SC. High Tc and quantum phase transition

Doping dependence of the Fermi surface (experimental data obtained from MQO)

1.4 FFT amplitude [arb.units] x = 0.151.2 1.0 x = 0.170.8 *x* = 0.16 0.6 0.4 0.2 0.0 10 100 0.1 Frequency [kT]

Fourier transform of MQO data

Fermi surface for x = 0.15 and 0.16 appears to be very different from that for x = 0.17

Phase diagram of electron-doped superconductor Nd_{2-x}Ce_xCuO₄

Summary (MQO) P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010).

Analytical formulas are obtained for the θ, ϕ -dependence of the crosssection area (MQO frequency), which can be used to extract the FS shape from experimental data on MQO in various layered high-Tc superconductors. We also suggests the optimal B-direction for the observation of the angular dependence of MQO.

1. Harmonic expansion:

$$k_F(\phi, k_z) = \sum_{\mu,\nu \ge 0} k_{\mu\nu} \cos(\nu k_z c^*) \cos(\mu \phi + \phi_\mu) .$$
$$A(k_{z0}, \theta, \varphi) = \sum_{\mu,\nu} A_{\mu\nu}(\theta) \cos[\mu \varphi + \delta_\mu] \cos(\nu c^* k_{z0})$$

2. The formula for the ϕ - dependence of Yamaji angles for elliptic FS, which also works well for any elongated FS.

0.5

-0.5

-1.0 -1.5 2

$$J_0\left[c^* p_B^{\max}\left(\phi\right) \tan \theta_n\right] = 0.$$

Applicable to elliptic and elongated in-plane FS:

Thank you for the attention!

Other results (AMRO):

1. Derivation and investigation of the applicability region of the relation between the angular dependence of magnetoresistance and of the FS cross-section area at $\omega_c \tau >>1$ in quasi-2D compounds (t_c/E_F<<1):

$$\sigma_{zz}\left(\theta,\phi_{0}\right) = \frac{e^{2}\tau\cos\theta}{8\pi^{4}\hbar^{2}}\int\frac{dk_{z0}}{m_{H}^{*}}\left(\frac{\partial A\left(k_{z0},\theta,\phi_{0}\right)}{\partial k_{z0}}\right)^{2}.$$

2. Angular magnetoresistance oscillations and their fit by numerical calculations:

