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The goal:

1.To derive analytical formulas for MQO and AMRO,
convenient for interpretation of experimental data.

2.To systemize the known previous results and to correct
them or specify their applicability regions.

3.To perform numerical calculations to fit the data and to
obtain information about high-Tc superconductors.

P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010)



Motivation [wr

All known high-Tc superconductors are layered quasi-2D
compounds. The detailed knowledge of electron dispersion
is very important for understanding the mechanisms of

superconductivity: (How FS depends on doping and temperature?
How close is SC Tc maximum to the quantum phase transition?
How good is FS nesting? What are the Fermi arcs and hot spots? )

General opinion is that cuprate high-Tc superconducting
materials are not metals and they do not possess Fermi
surface. Hence, the observation of magnetic quantum
oscillations or of typical magnetoresistance is impossible.
This is not true as many recent experiments show!

The only alternative to MQO to get experimental
information about the electron spectrum is the
angle-resolved photoemission spectroscopy (ARPES).




ARPES (Angle resolved photoemission spectroscopy) @

Main idea: i
pnoton source
E=thw—E, — &
E, = kinetic energy of the |
outgomg electron — can
be measured.

hw = incoming photon

energy - known from

experiment, ¢ = known

electron work function.

Angle resolution of samp,e
photoemitted electrons

gives their momentum. UHV Ultra High Vacuum ‘

<10~ mbar )
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energy analyser

The photocurrent intensity is proportional to a one-particle spectral function

multiplied by the Fermi function: ..”1{ -.-'.,-1} _ _1“{ () ]lflfu.:']

- . | ! ! 4
Alw. k) = 1 - [-'L’_j ___ Therefore can find out
| T (w—e(k) — X (w))? + ¥"(w)?  information about E(k)

: |
Drawback 1: Only surface electrons participate! Motivation



Motivation

ARPES data and Fermi-surface shape

The Fermi surface of near
optimally doped Bi,Sr,CaCu,0g,;
(a) integrated intensity map
(10-meV window centered at
EF) for Bi2212 at 300 K
obtained with 21.2-eV photons
(Hel line); (b),(c) superposition
of the main Fermi surface (thick
lines) and of its (p,p) translation
(thin dashed lines) due to
backfolded shadow bands; (d)
Fermi surface calculated by
Massidda et al. (1988).

Drawback 2: Ambiguous interpretation.



Motivation

Phase diagram of high-Tc cuprate SC.
High Tc and quantum phase transition

electron doped
200 T
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Motivation

Quantum oscillations from Fermi arcs
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Figure 4 | Exact diagonalization of the lattice model. a, DOS as a function of energy in the FAM in zere (red) and non-zero (black) magnetic field
corresponding to two vortices in a 20 x 20 magnetic unit cell In ¥ BCO with |attice constant ag ~ 44 this corresponds to the physical field of about 64 T.
The parameters used are as follows: Agft=1, e/t =—13, v=0.6 and r =0.1. b, The low-energy DOS for the same parameters, in detail. ¢, The power
spectrum of the low-energy DOS showing dominant frequency of oscillations 34t~ and its second harmonic. d, DOS at the Fermi level as a function of ef.



Experiments on MQO in @

cuprates
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Figure 2 | de Haas-van Alphen oscillations in YBa,Cu;0¢ . a, Fourier

Figure 4 | Fermi surface reconstruction in YBa;Cu304 5. a, Schematic
Fermi surface reconstruction for a commensurate ordering wavevector

Q = (n,m) and nominal doping prem = 0.1 in the extended Brillouin zone

S.E. Sebastian, N. Harrison, E. Palm et al., NATURE 454, 200 (2008)
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Fermi Surface of Superconducting LaFePO Determined from Quantum Oscillations
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Motivation

Experiments on MQO in high-Tc
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Introduction. ‘ A3

Lifshitz-Kosevich formula for MQO

Quantum oscillations of magnetization (de Haas — van Alphen effect)

4

chA
F = Xtr
(27z)e ’

The temperature damping factor R 1 (p) = np / sinh(mkp),

Mo J% 3 p2 sin{2np(£ —1j + E}RT<1o)RD<p>Rs<p>,

where the dHVA fundamental frequency

k=27k;T /ha,, o, =eH /m*c.

The scattering (Dingle) damping factor

Ry(p) = exp[%j . 7=h/(27)k T, is the mean free scattering time.
L0

X
The spin factorR (p) = cos(ﬂpgm ]
2m,




3D compounds in tilted magnetic field

3D case k" is conserved.

Landau
levels

Extremal cross
section Fermi surface of gold

Extremal cross-section area of FS measured at
various tilt angles of magnetic field allows to
obtain the total Fermi surface of metals.

MQO is a traditional tool to study FS geometry

E




[mQ cm]
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Problems with MQO in high-Tc materials

High-Tc cuprate are very dirty (doping is necessary for SC), and
the MQO signal is weak and noisy.

The Fermi surface in these materials depends on doping level,
temperature and magnetic field => much more work is need.
Magnetic field must be strong enough to suppress SC.
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Can one simplify the
processing of MQO data?



Introduction _
Layered quasi-2D metals

(Examples: heterostructures, organic metals, high-Tc superconductors)

Magnetic ) Electron wave functions overlap leads to
2D electron gas Q,/

field B‘ the finite interlayer transfer integral t,
2D electron gas <Aectron dispersion in the tight-binding
o x approximation is highly anisotropic:
= 2D electron gas £(p)=p,*/2m  +2t, cos(k d), t,<<Eg

(coherent-tunneling, conserving p;)

Fermi surface in quasi-2D metals is a warped cylinder

B_Lconducting layers

Bl\

Landau levels -
The extremal FS cross-section areas

are measured by magnetic quantum
Extremal oscillations. Their difference gives the
. Cross value of interlayer transfer integral t,

%. | : | sections




Harmonic expansion of Fermi momentum

ke (o,k.) = Z Ky cos (Vk.c™) cos (o + ¢,) -

>0

The coefficients kﬂv fall down rapidly with increasing ¢ andv:
Ko /Koo <<1, Ky, IKgp <<1, K, IKgp~ K, Kp, IKgg =

lllustration how different harmonics affect the FS shape

T X R BN

.||r'|.F_'|_,” Jlr';'-”] Jlr';'-”: Jll":: ] jll":_” Jlr';r_'l_:

[C. Bergemann et al., Adv. Phys. (2003)]



Harmonic expansion for the
angle-dependence of FS cross-
section area (MQO frequency) in
Q2D layered metals.

Harmonic expansion of Fermi momentum

ke (o,k.) = Z Ky cos (Vk.c™) cos (o + ¢,) -

>0

Harmonic expansion of the angular dependence of FS cross-section area

A (k,,0, ¢ Z A (0) cos | + 0, cos (ve'k,) .

L1

We only need to write down the relation between
the first few coefficients k,, and A !




. H4
First-order harmonic expansion result. Why it is bad? 4

| 21k
1 00 / 2 .
AWM = p—z E (—=1)*" k. cos [ud + ¢,] cos (VE.oc™) J, (VE)
p.v>0 [ C.Bergemann et al., PRL 84, 2662 (2000). ]

Since J,(0)=0 for u#0, all terms ”kuo vanish in A"). Hence, the ¢-dependence
of the cross-section area A(B,¢) starts from the term K1, which is of the same
order as the neglected second-order term K ,oKo 1/Kg .

p1

Therefore, the first-order result in klLW for the cross-section area does
not give the correct ¢-dependence even in the lowest order!

In fact, the error is very large. @-dependence of the
Oanl] first Yamaji angle

4621

For the in-plane Fermi surface
with tetragonal symmetry (as in
high-Tc cuprates) the amplltude

of the @-oscillations i 61
of the first Yamaji rw s54

angle is 6 times less [~ 0
than the exact resulit. kJ ;
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New result 1A: Corrected analytical formula for the

main ¢-dependent term in the cross-section area
(straight interlayer hopping)

This formula is obtained in the second order in coefficients
k, from the Fermi momentum expansion

krp (o, k.) = Z k. cos (VE.c™) cos (uo + @,) -

>0

The main ¢-dependent term in the cross-section area is

A 1.2 1 e | o T
A1) — dmkpt Ch cos [k " these terms

Er cos 6 were absent

X {Jo (k) + 3 (—1)mﬂ cos (mao) [(1+ 31/ + m) Jm (k) — f'i.»]vi_|_1 (h‘.)]}

where (3 = k,0/koo. 01 =ku1/ko1, K= C*kF tan ¢

For the typical electron dispersion & (k ) = k" g [31/[3 =1



New result 1B: Corrected analytical formula for the

main ¢-dependent term in the cross-section area
inclined (¢-dependent) interlayer hopping

Fermi momentum [ (¢, k.) wa o) cos (vk.c")
is given by >0
ko (@) = (1+ Bcos2mo)kp,
where | 2t . . . -
ki (¢) =~ 7 krCysin (m@) (1 + 31 cos 2mag)
F

The main ¢-dependent term in the cross-section area in the second
order in coefficients k , is | these terms
Tk, N 47&%1‘ Cl e were absent

A (k.0,0,p) = 2
N _ 3 3m /2 .Bl ‘ . ) / : ¢ :
% < J (k) sin () + ) (—1) 1+ — +3m9 J3 (k) — 6J3me1 (k) | sin (3mp)

where (3 = k,0/koo, S1 =ku1/ko1. k = c*kptand

For the typical electron dispersion € (k,¢) = k“g(¢), 1/3 =1



The difference between first- and
second-order results is very large.

For the in-plane Fermi surface with tetragonal symmetry (as in high-Tc
cuprates) the amplitude of the @-oscillations of the first Yamaiji
angle is 6 times less than the exact result.

In-plane Fermi surface ¢-dependence of the first Yamaji angle
for f=K,/Kyy=0.07 o Yanl]
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What results obtained from the first-order harmonic
expansion are valid and what can be corrected ?

Extracted warping parameters k [10’m-"] of the three Fermi surface
sheets of Sr,RuOQ, [data from C. Bergemann et al., Adv. Phys. (2003).]

e D X
UCERN

-'E':ﬂll ‘E"Fihl ‘ﬁ‘r‘ 1

- TR

—10 — 0.31 1.3 — —1.0
_45 G small — 0.6 small
ﬂmall @ — small 70,5

small

Probably, correct

Wrong, but can be easily corrected using new formula




Why do we need experiments to get the FS geometry.
If band-structure calculation are enough?
Sr,RuO,

Table 9. Warping parameters k,, from table 4, compared with LDA band structure calculations.
The units are in 10" m =, as usual. For more details, refer to the text

Sheet Parameter DHwvA LDA {Oguchi) LDA (5imgh)
e — o 304 3282 334.4
k.1 10 22.0 27.0
.I!l..;'rg .31 0.9 1.0
—_— ka 1.3 0.3 0.8
ks 1.0 2.1 2.1
i — gy (22 6531 6494
Ka 45 43.1 45.0
% ka 3.8 B.5 0.6
Ko small 2.9 2.8
kg 0.6 1.5 4.0
kg small 1.0 1.9
y — kg 753 723.5 724.0
Kan small 3.7 0.4
K small 1.2 1.5
— kg 0.53 2.0 1.9
K4 small 33 1.9
K 4 0.5 0.7 0.4




Application of the obtained formulas to analyze MQO
and angular dependence of background MR

The above formulas can be used to:

Determine the optimal magnetic field direction for the
observation of the ¢p-dependence of MQO frequency.

Extract the Fermi-surface shape and electron dispersion from
the angular dependence of the MQO frequency.

Determine the optimal magnetic field direction for the
observation of beats of MQO. Their observation mean the
existence of 3D Fermi surface.

Determine the optimal magnetic field direction for the
observation of Yamaji angles and to extract electron dispersion
parameters from the ¢-dependence of the Yamaji angles.

Check the numerical fittings when the large number of fitting
parameters makes the numerical procedure to be ambiguous.



Problems with the standard (L-K) description of
qguasi-2D magneotresistance oscillations

Phase shift of beats between MQO of  Slow oscillations in B-(BEDT-TTF)IBr,
conductivity and magnetization in and other 2D metals, 10-year puzzle!

the organic metal 3-(BEDT-TTF)IBr,
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Magnetic quantum oscillations in quasi-2D compounds

Quasi-2D compounds include
heterostructures, layered organic metals,
LLs intercalated graphite compounds, high-

e Tc cuprates and many others.

Fermi surface

Extremal | Electron dispersion in the tight-binding
—.CrOSS approximation

sections | ¢(n,p,)=ho (n+1/2)+2t cos(k,d), t<<Ep.

hwe<4t<<E

The dHVA frequency is related to the extremal cross section of the
Fermi surface as F, , = chA_ /2me

Two extremal cross sections of the Fermi surface =>
two close fundamental frequencies in MQO:
M ~ sin(2n(F-AF)/B) + sinQa(F+AF)/B) = 2sin(2aF/B) cos(2xrAF/B)

beats



The theory of magnetic quantum oscillations in Q2d and
the quantitative description of the slow oscillations and the
phase-shift of beats has been given in the papers:

1. P.D. Grigoriev, M.V. Kartsovnik, W. Biberacher, N.D. Kushch, P.
Wyder, "Anomalous beating phase of the oscillating interlayer
magnetoresistance in layered metals", Phys. Rev. B 65, 60403(R) (2002).

2. M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher, N.D. Kushch, P.
Wyder, "Slow oscillations of magnetoresistance in quasi-two-
dimensional metals", Phys. Rev. Lett. 89, 126802 (2002).

3. P.D. Grigoriev, "Theory of the Shubnikov-de Haas effect in quasi-
two-dimensional metals”, Phys. Rev. B 67, 144401 (2003).

Main idea: the traditional expansion (in the Lifshitz-Kosevich formula)
in the small parameter - the ratio of the Landau level separation and
the band width, ho, /t, , is not valid in quasi-2D metals because the
band width in k, in q2D metals is too small.




What to do when the harmonics do not fall
down rapidly with increasing their order?

krp (¢, k.) = Z k. cos (VE.c™) cos (o + ¢,) -

>0

For elongated in-plane Fermi surface = K, /Ky, ~1.
b

L5§
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Yamayji angles for elliptic in-plane FS

dilation A, :
X — A X

e

c.
S

axially-symmetric
Fermi surface

Yamaji angles 6., are known.

Being independent of {, they
satisfy the equation:

Jo (c"kptanf,,) = 0

Substituting azimuth angle after
the dilation, tan o1 = Atan g
we obtain the new Yamaji angles:

==

w

elliptic in-plane
Fermi surface

The magnetic field direction
(nz/ A, 1y, 1)
\/ (ny/N\)* + nZ + n?

New Yamaji angle is ¢-dependent:

n — A, (n)=

_ 2 2 2
tan 6y \/”‘r/)‘ T \/CDSQ © + sin?
— = S Q.
tan ’9‘:’111?1 n. tan g‘:’am )\E
#
tan 6y 1

tan &y .., \/){3 cos? p; + sin?




New result 2: Exact formula for the ¢-dependence of
Yamaji angles for the elliptic in-plane Fermi surface:

For the elliptic Fermi surface ¢ (k.. k,) = ki/??’ﬂm T kﬁ/Q?’ny

the Yamaji angles 0,

are given by the equation: JO [C ])Hg'l = ((D) tan 9‘1’1} — 0(3)

rrcn:

P

LA

where pp™* = \/ (p1 cos §)* + (pa sin ¢)”, y =5

and p% = 2m,.cp and p% = 2mycp. O Pg

For the low-symmetry electron dispersion (triclinic or monoclinic
with the elongated FS), this formula allows to extract the ratio of the
main axes of the FS ellipse (or how elongated FS is).




Comparison of the new analytical formula for elliptic FS
with the numerical results for other shapes of FS

| Conclusion: For any elongated FS it gives good agreement |
!

Very elongated but not JO [C*pgm{ ((D) tan Qn} — (.

elliptic Fermi surface:
ky
@-dependence /of the first Yamaji

15¢
100
/ : angle

| ‘ \ kx
-4 -2 —05 ; 2 4 OYam[Rad]
-10¢ .
mEl 0.9 |

Red line — result of the 0
new formula, :
it almost coincides with 0.7 '

exact result (blue line); f
Green line — new harmonic 06"
expansion result; *
Magenta — old harmonic
expansion result;




Comparison of the analytical formulas with numerical
results for FS with tetragonal symmetry

Conclusion: formula fails for tetragonal or hexagonal symmetries,
where harmonic expansion is rather accurate.

Fermi surface Oyam[Rad]

@-dependence

of the first Yamaji angle

Green line — new
result; it coincides
with exact result
(blue line); Magenta
— old harmonic T
expansion result;

3
Red line — result of formula -/0 [C*pma’x

5 () tan 6, = 0.



Comparison with previous results

New formula for the Yamaji angles
Jo [c"pE™ (¢) tan 6,,| = 0.

approximately coincides with the previous result of
Yakovenko:

tan 0] = [7h(n — 7,) £ (P wllpp™*d  (4)

The derivation of (4) is not applicable, but the
formula works well for many compounds!

This explains why Eq. (4) was successfully used
to determine the elongation parameters of the
Fermi surface in organic metals.



Derivation of the formula (1) in Ref. M. V. Kartsovnik, V. N.
Laukhin, S. I. Pesotskii, I. F. Schegolev, V. M. Yakovenko, J. Phys. | 2, 89 (1992).
At o .t >>1 from the S-T integral a*m} — Fi'ﬂ;:f 3“1 px < t.r >

where the velocity, averaged over the electron orbit

2d (T
o = 0B/op, = 7 [ desin { [p,.(e}d+ (e ©w)] /7, (2)

Py and p;(§) = P, —py (€) cot o,

< The integral over is assumed to be rapidly

1p. T, oscillating and is taken in the saddle-point

/ S e approximation, which gives
; Pd) ( [4p5r™) cot  — (p{™u
COs

>‘{E P* %,(P;) o sin (-—%—- = Il ) _%) '
0— ¢ This gives the condition for the N-th Yamaji angle
(minimum of averaged velocity):

| ot pe| = [FA(N — 1/4) £ (p{™*u))/p{7*¥d, (1)

Problem: the integral (2) is not rapidly oscillating even at high tilt angle
as in the first Yamaji angle, where it makes only one oscillation.




First analytical result on the azimuth-angle dependence
of magnetoresistance in quasi-2D metals R,,(0,0)

[ M. V. Kartsovnik, V. N. Laukhin, S. I. Pesotskii, I. F. Schegolev, V. M.

Yakovenko, J. Phys. | 2, 89 (1992). ]

The ¢-dependent Yamaji angles (maxima of R,,(0,¢) are given by equation:

tan 0| = [7h(n — ) + (pI ™ wl/pp**d

where the sign in the + 1s the same as the sign of

max max :

tan 0 and the meaning of p, ™ and pg"" is illustrated
in Figure 4: p,”" is the in-plane Fermi momentum
whose projection on the field rotation plane, deter-
mined by angle ¢, takes the maximum value, denoted
as pg . From the periods of AMROs measured at
various azimuthal angles ¢, one can determine
pgp (@) and graphically deduce the shape and size of
the FS cross section in the p.p, plane.

4D,

/

Fig. 4

This simple formula is widely used to extract the in-plane FS shape



Other results (AMRO):

Derivation and investigation of the applicability region of the
relation between the angular dependence of magnetoresistance

and of the FS cross-section area at ®.T >>1 in quasi-2D
compounds (t/E-<<1):

(6. o) 27 cost [ dhzo [OA (kz0.6,00)\°
T (0.0 = — - , .
2z A0 S7dh2 my Ok .o

Angular magnetoresistance oscillations and their fit by numerical
calculations:

— T=42K T

0.50 F
28T

90 60 -30 0 30 60 90
0 [°] 0 (degree)



Summary (MQO) P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010).

Analytical formulas are obtained for the 0, -dependence of the cross-
section area (MQO frequency), which can be used to extract the FS
shape from experimental data on MQO in various layered high-Tc

superconductors. We also suggests the optimal B-direction for the
observation of the angular dependence of MQO.

1. Harmonic expansion:

krp (o, k.) = Z K. cos (vk.c™) cos (uop + ¢,,) .

>0 W

Ak, 0, Z A, (8) cos [pp + 0,] cos (vc k)

1L, L

2. The formula for the ¢ - dependence of Yamaji angles for elllptlc FS,
which also works well for any elongated FS.

Jo [C*pmax (()) tan (9?@] — (). K i‘:’

Applicable to elliptic and elongated in-plane Fs:k !

).
)

Thank you for the attention!




Introduction . . . A1
=120 Background (classical) magnetoresistance in

normal 3D metals (strong fields)

In strong magnetic field the magnetoresistance depends on the

shape and topology of the Fermi surface (FS), because at o t>>1
the electrons can encircle the FS before being scattered.

. . " Ay _Ayx — Ay
The conductivity tensor 5 H2 H H
for closed trajectories G — Ay Ayy — Ay,
H H2
A A
FS, containing ——éf— f‘}y A,,
open and closed
trajectories — Ay
B:xx H BZ:\‘:
— Ay Ay — Ay
For open trajectories /7 H H? H
(open orbit along x-axis) B Azy A
the conductivity tensor is £ H 2z




A10

Infroduction  g,ckground magnetoresistance in g2D.
Shockley tube-integral formula for conductivity.

The convenient coordinates for electrons in magnetic field in
momentum space are: energy E, momentum along magnetic
field k,_| and the phase along the closed electron trajectory ¢)

Kinetic equation for electron distribution function g in magnetic field in

the T—approximation in Q2D metals is afo g %,
PP = eE-V( 0‘}:4; )“‘—--I"(OH—"“

The solution of this equation is

&
e afo " Y/t T ,
g (&, ku, ¢) = - ( deg ) g v (&, ku, ¢)e* " ?°H" 44" .E,

Integration of this distribution function over the momentum space
gives the Shockley tube-integral formula for conductivity

2 * /
\ e mir cost fwir
oap (0,0) = dhzo——————
| Il —exp(—27/wyT)

27T 27 )
( ! — iyl !
/ / Jug (¥ — " ko) e ¥ [CHT o) day.




A10

Infroduction  g,ckground magnetoresistance in g2D.
Shockley tube-integral formula for conductivity.

The convenient coordinates for electrons in magnetic field in
momentum space are: energy E, momentum along magnetic
field k,_| and the phase along the closed electron trajectory ¢)

Kinetic equation for electron distribution function g in magnetic field in

the T—approximation in Q2D metals is afo g %,
PP = eE-V( 0‘}:4; )“‘—--I"(OH—"“

The solution of this equation is

&
e afo " Y/t T ,
g (&, ku, ¢) = - ( deg ) g v (&, ku, ¢)e* " ?°H" 44" .E,

Integration of this distribution function over the momentum space
gives the Shockley tube-integral formula for conductivity

2 * /
\ e mir cost fwir
oap (0,0) = dhzo——————
| Il —exp(—27/wyT)

27T 27 )
( ! — iyl !
/ / Jug (¥ — " ko) e ¥ [CHT o) day.
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Introduction

Many papers are devoted to the analytical theory on the
polar-angle 0-dependence of magnetoresistance and MQO
frequency for the axially-symmetric electron dispersion

e(p)=p,2/2m , +2t, cos(k,d).

Then Shockley tube integral

e? mi; cost [wy
ap (0, 0) = Ik 2
7ap (0, 0) 473 h2 /( Dl—e*{p (=27 /wyT)

27 27
| N —ah' /e i ! f
/ / E ,1(3 ( ‘L_-.1 - ?T__..a. . A-zo ) LL- 11'-) X*-LJH T {_1',’ L‘ {_[_?T_-'_" .

simplifies and in the first order in {, gives '
R. Yagi et al., J. Phys. Soc. Jap. 59, 3069 (1990) _ {1\
| ) | W (a) wt= 0.8
o-(B > Ji(kpdtan0) _ ) = 1.5
B _ J3(kpd tan 0) + 22 =0 \ Gos=s
5-(0) " Gy =, | 1\,
% \ \\\
which gives AMRO: — "\,{h _
From AMRO one determines k. , which : /\ﬂﬂ%

is compared with the MQO data. 0 3 6 o



UG AU CHON Geometrical interpretation of the [an1
angular magnetoresistance oscillations in q2D

Conductivity (very roughly) is proportional to the mean square velocity
integrated over the whole Fermi surface : 2 2
9 o, CE€ r<vZ >FS

V, = @g/@kz oc OA/ akz , where A is the cross-section area of the
Fermi surface by the plane 1B

B _Lconducting layers Inclined magnetic field
Fermi surface Fermi surface

N LL Geometrical B\
o _ interpretation | /LLS
< of the Yamaji
angles in
Extremal g oD Ere
cross quasi-
= cacti metals —|_Cross
%. —pr sections sections
Cross section area and the electron Cross section area and the electron
dispersion have strong k,-dependence dispersion are almost k,-independent
Below | will derive )  \_ © 7 Ccos 0 f dkzo [ OA (kz0.0, ¢0)
Tzz \Y2W0) — T o 4% " .
that at .t >>1 8mh? miy Ok .o



Angular dependence of background magnetoresistance

g (C2cm)
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Figure 1 Polar AMRO sweeps in an overdoped TI2207 single crystal (7. = 20K). The
data were taken at T= 4.2K and H = 45T. The different azimuthal orientations (+ 4%) of
gach polar sweep are stated relative to the Cu—0—Cu bond direction. The key features of
the data are as follows: (1) a sharp dip in o . at & = 90° for low values of ¢, which we
attribute to the onset of superconductivity at angles where H..(¢, 8) is maximal, (2) a
broad peak around H|jab (# = 907 thatis maximal for ¢ = 457, consistent with previous
azimuthal AMRO studies in overdoped TI12201 (ref. 16), (3) a small peak at H||c (@ = 07),
and (4) a second peak in the range 25° << @ < 45° whose position and intensity vary
strongly with ¢. These last two features are the most critical for our analysis. Similar

pe(Qcm)

p.(R2cm)
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Data
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Reconstruction

0,011 - -

0.01 4 .

of the FS in

T12201 from
polar AMRO
data.

o] 20 40 60 0 20 40 60 80
Angle (degrees)

N. E. Hussey et al., "A coherent 3D Fermi
surface in a high-Tc superconductor”,
Nature 425, 814 (2003)
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Difficulties with the numerical calculation of AMRO

2 * /
% e miycost jwy
7ap (0.0) = g5 [ dho7— \
o h 1 —exp(—2n/wyT)

27 27
/ / L kzo) v (Y — AHO) Y WHT Q) da).

| The numerical calculation of the S-T integral is hard, because

1)At high tilt angle the FS cross section includes additional closed
pockets due to multiple intersection with FS.

2)The integration variable  differs from the azimuth angle ¢. This
difference must be thoroughly taken into account.

3)At each step of 3D integration one needs to solve the nonlinear
algebraic equation to determine k, at the point on the FS intersection
with the plane L B.

4)The calculation gives 0 ,,(0,0) for the known electron dispersion,
while we need to solve the inverse problem. The fitting procedure takes
too many fitting parameters and becomes ambiguous.

Can we avoid these complications?



Derivation of relation (5) between magnetoresistance
and FS cross-section area

We start from the Shockley tube integral:

o2 m’;cosf fwy
s (0.0) — 1k -
cap (0, ) A3 R2 /( zol—eK[} (—27/wHT)

27 27
/ / (Y. kzo) v (Y — " k.)€ S X““15‘”--*5.@& di).

At 0.t >>1 it simplifies to

7

e’ mjy cosf /L:JH 2n ]
faTe H, L dJ'Ew Vo -"If'._ JE.:*:-- di) i
Taa (6, ¢) = 413 h? / "1 —exp (—2n T/wyT) (f Va (¥, Kz0) dy )

The integral

[ = /“ dipu. (1, ko) :f df;kF (0, k., )dﬁz‘-p;.(@_._E} dE :f do kp (o, k.) dflpr(m k.)
0 0 mj; cos ¢ oFE ok, 0 my CDSEP ok,

. Okp(0,k:) _ Okp[¢, k. (kw0,0)] and Ok, 0k, = 1from
The derivative ;- Ok - (OF./0k0) k, = kyg— kp (0 + @', k,) tan cos ¢

_ /2 do Ok (¢,k.) _ OA(ku0,0,00)
o mjcosf 20k, k.o mj;

Combining this we get




New result 1: Derivation of relation between the angular
dependence of magnetoresistance and of the FS cross-section area
Its applicability region.

At ®.T >>1(strong magnetic field and in pure samples) and t,<<E,
the interlayer conductivity 0,,(0,9) is related to the k,-dependence
of the FS cross-section area A as

27 oS g A (k.o. 6. d 2
e 000 = i [ S ( A (Fen, 9 ‘*’“)) | G)

87h? my; k.o

This result relates the calculations of the B\ Fermi surface
0,9 - dependence of cross-section area

with the magnetoresistance. The positions g
and the ¢-dependence of the Yamaji

angles are the same. Extremal
This relation works well even at ®_ T ~1, __Cross
as show numerical calculations. C sections




Numerically calculated angular dependence of conductivity
0,,(0,0) for several _t at two different azimuth angles.
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These plots show that the relation between the angular dependence of
magnetoresistance and of cross-section area works well at ®_t >~2.

They also show that the saturation value of conductivity at 0—m/2 is strongly
¢-dependent and can be used to extract the in-plane FS shape.



AMRO in NCCO
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Phase diagram of high-Tc cuprate SC.
High Tc and quantum phase transition

electron doped
200 T

hole doped
B Theory predicts shift
Nd,_Ce,CuO, i of the QPT point in
(NCCO) g SC phase? How
§ =i strong is this shift?
O i
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il spe—— Doping level —*= P

Original FS: g A
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o.-a Reconstructed FS:
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U
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n=0.17
Sy, =41.5% of Sg,

A, .~ 64 meV;
Ap 16 = 36 meV

n=0.15and 0.16




T[K]

Doping dependence of the Fermi surface
(experimental data obtained from MQO)

Fourier transform of MQO data

Phase diagram of _14r
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Fermi surface for x = 0.15 and 0.16 appears to
be very different from that for x =0.17



Ndz_xCZXCUO4
n =0.15 (optimal doping)
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Summary (MQO) P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010).

Analytical formulas are obtained for the 0, -dependence of the cross-
section area (MQO frequency), which can be used to extract the FS
shape from experimental data on MQO in various layered high-Tc

superconductors. We also suggests the optimal B-direction for the
observation of the angular dependence of MQO.

1. Harmonic expansion:

krp (o, k.) = Z K. cos (vk.c™) cos (uop + ¢,,) .

>0 W

Ak, 0, Z A, (8) cos [pp + 0,] cos (vc k)

1L, L

2. The formula for the ¢ - dependence of Yamaji angles for elllptlc FS,
which also works well for any elongated FS.

Jo [C*pmax (()) tan (9?@] — (). K i‘:’

Applicable to elliptic and elongated in-plane Fs:k !

).
)

Thank you for the attention!




Other results (AMRO):

Derivation and investigation of the applicability region of the
relation between the angular dependence of magnetoresistance

and of the FS cross-section area at ®.T >>1 in quasi-2D
compounds (t/E-<<1):

(6. o) 27 cost [ dhzo [OA (kz0.6,00)\°
T (0.0 = — - , .
2z A0 S7dh2 my Ok .o

Angular magnetoresistance oscillations and their fit by numerical
calculations:

— T=42K T
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