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The goal:
1.To derive analytical formulas for MQO and AMRO, 
convenient for interpretation of experimental data.
2.To systemize the known previous results and to correct 
them or specify their applicability regions. 
3.To perform numerical calculations to fit the data and to 
obtain information about high-Tc superconductors.

P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010)



Motivation

All known high-Tc superconductors are layered quasi-2D 
compounds. The detailed knowledge of electron dispersion 
is very important for understanding the mechanisms of 
superconductivity: (How FS depends on doping and temperature? 
How close is SC Tc maximum to the quantum phase transition? 
How good is FS nesting? What are the Fermi arcs and hot spots? )

General opinion is that cuprate high-Tc superconducting 
materials are not metals and they do not possess Fermi 
surface. Hence, the observation of magnetic quantum 
oscillations or of typical magnetoresistance is impossible.

This is not true as many recent experiments show!

The only alternative to MQO to get experimental 
information about the electron spectrum is the 

angle-resolved photoemission spectroscopy (ARPES).
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ARPES (Angle resolved photoemission spectroscopy)

Ek = kinetic energy of the 
outgoing electron — can 
be measured. 

incoming photon 
energy - known from 
experiment, φ = known 
electron work function. 
Angle resolution of 
photoemitted electrons 
gives their momentum.

Main idea:

Therefore can find out 
information about E(k)

The photocurrent intensity is proportional to a one-particle spectral function 
multiplied by the Fermi function:
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Rev.Mod.Phys. 75, 473 (2003)

MotivationDrawback 1: Only surface electrons participate!



ARPES data and Fermi‐surface shape
The Fermi surface of near 
optimally doped 
(a) integrated intensity map 
(10-meV window centered at 
EF) for Bi2212 at 300 K
obtained with 21.2-eV photons 
(HeI line); (b),(c) superposition 
of the main Fermi surface (thick 
lines) and of its (p,p) translation
(thin dashed lines) due to 
backfolded shadow bands; (d) 
Fermi surface calculated by
Massidda et al. (1988).

Motivation

Drawback 2: Ambiguous interpretation. 



Phase diagram of high-Tc cuprate SC. 
High Tc and quantum phase transition 

Nd2-xCexCuO4

(NCCO)

Motivation

n = 0.17
Sh = 41.5% of SBZ

Original FS:

Theory predicts shift 
of the QPT point in 
SC phase? How 
strong is this shift?

Reconstructed FS:

n = 0.15 and 0.16

Sh  1.1% of SBZ;
0.15  64 meV;
0.16  36 meV



Quantum oscillations from Fermi arcs

ARPES image plot

T. Pereg-Barne et al., Nature Physics 6, 44 - 49 (2009) 

Motivation



Experiments on MQO in 
cuprates

S.E. Sebastian, N. Harrison, E. Palm et al., NATURE 454, 200 (2008)

M3



Experiments on MQO in high‐Tc
M4

Motivation



Lifshitz‐Kosevich formula for MQO
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The spin factor

Quantum oscillations of magnetization (de Haas – van Alphen effect)

Introduction.



3D compounds in tilted magnetic field

3D case k║ is conserved.

FS

B

Landau
levels

Extremal cross 
section

Extremal cross-section area of FS measured at 
various tilt angles of magnetic field allows to 
obtain the total Fermi surface of metals.

Fermi surface of gold
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MQO is a traditional tool to study FS geometry



Problems with MQO in high‐Tc materials

n = 0.15 (optimal electron doping)

1. High-Tc cuprate are very dirty (doping is necessary for SC), and 
the MQO signal is weak and noisy. 

2. The Fermi surface in these materials depends on doping level, 
temperature and magnetic field => much more work is need.

3. Magnetic field must be strong enough to suppress SC.

x = 0.15

x = 0.16
x = 0.17

Can one simplify the 
processing of MQO data? 



Layered quasi‐2D metals
Introduction

Electron dispersion in the tight-binding 
approximation is highly anisotropic:
ε(p)=p72/2m 7 +2tz cos(kzd),  tz<<EF

2D electron gas
Magnetic 
field B

2D electron gas

2D electron gas

Electron wave functions overlap leads to 
the finite interlayer transfer integral tz

Fermi surface in quasi-2D metals is a warped cylinder

Landau levelsB
B^conducting layers

Extremal
cross 
sections

(Examples: heterostructures, organic metals, high‐Tc superconductors)

zz

(coherent-tunneling, conserving p||)

The extremal FS cross-section areas 
are measured by magnetic quantum 

oscillations. Their difference gives the 
value of interlayer transfer integral tz

FS
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Illustration how different harmonics affect the FS shape

[C. Bergemann et al., Adv. Phys. (2003)]

Harmonic expansion of Fermi momentum

The coefficients k fall down rapidly with increasing and
k /k <<1, k /k <<1, k /k ~ k k /k 2.



H1

Harmonic expansion of Fermi momentum

Harmonic expansion of the angular dependence of FS cross-section area

We only need to write down the relation between 
the first few coefficients k and A !
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First‐order harmonic expansion result. Why it is bad?

Since J(0)=0 for ≠0, all terms ∼k0 vanish in A(1). Hence, the φ-dependence 
of the cross-section area A(θ,φ) starts from the term kμ1, which is of the same 
order as the neglected second-order term kμ0k₀₁/kF .

Therefore, the first-order result in k for the cross-section area does 
not give the correct φ-dependence even in the lowest order!  

In fact, the error is very large.

For the in-plane Fermi surface 
with tetragonal symmetry (as in 
high-Tc cuprates) the amplitude 
of the φ-oscillations 
of the first Yamaji 
angle is 6 times less
than the exact result.

φ-dependence of the 
first Yamaji angle
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[ C. Bergemann et al., PRL 84, 2662 (2000). ]



New result 1A: Corrected analytical formula for the 
main ‐dependent term in the cross‐section area 

(straight interlayer hopping)

This formula is obtained in the second order in coefficients 
k from the Fermi momentum expansion 

The main -dependent term in the cross-section area is

where

For the typical electron dispersion 

these terms 
were absent



New result 1B: Corrected analytical formula for the 
main ‐dependent term in the cross‐section area 

inclined (φ‐dependent) interlayer hopping

Fermi momentum 
is given by

The main -dependent term in the cross-section area in the second 
order in coefficients k is

where

For the typical electron dispersion 

these terms 
were absent

where

Fermi
surface



The difference between first- and 
second-order results is very large.
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For the in-plane Fermi surface with tetragonal symmetry (as in high-Tc 
cuprates) the amplitude of the φ-oscillations of the first Yamaji 
angle is 6 times less than the exact result.

φ-dependence of the first Yamaji angleIn-plane Fermi surface
for =k40/k00=0.07



What results obtained from the first‐order harmonic 
expansion are valid and what can be corrected ?

Extracted warping parameters k [107m-1] of the three Fermi surface 
sheets of Sr2RuO4 [data from C. Bergemann et al., Adv. Phys. (2003).]

Probably, correct Wrong, but can be easily corrected using new formula



Why do we need experiments to get the FS geometry. 
If band‐structure calculation are enough?

Sr2RuO4



Application of the obtained formulas to analyze MQO 
and angular dependence of background MR

1. Determine the optimal magnetic field direction for the 
observation of the φ‐dependence of MQO frequency.

2. Extract the Fermi‐surface shape and electron dispersion from 
the angular dependence of the MQO frequency.

3. Determine the optimal magnetic field direction for the 
observation of beats of MQO. Their observation mean the 
existence of 3D Fermi surface.

4. Determine the optimal magnetic field direction for the 
observation of Yamaji angles and to extract electron dispersion 
parameters from the φ‐dependence of the Yamaji angles.

5. Check the numerical fittings when the large number of fitting 
parameters makes the numerical procedure to be ambiguous.  

The above formulas can be used to:



Problems with the standard (L‐K) description  of 
quasi‐2D magneotresistance oscillations

Phase shift of beats between MQO of 
conductivity and magnetization in 
the organic metal -(BEDT-TTF)IBr2

Slow oscillations in  -(BEDT-TTF)IBr2 
and other q2D metals, 10-year puzzle!
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Magnetic quantum oscillations in quasi‐2D compounds 

beats

Quasi-2D compounds include 
heterostructures, layered organic metals, 
intercalated graphite compounds, high-
Tc cuprates and many others.   

Electron dispersion in the tight-binding 
approximation
ε(n,pz)=ћωc(n+1/2)+2t cos(kzd),   t<<EF.

The dHvA frequency is related to the extremal cross section of the 
Fermi surface as FdHvA = cћAext /2πe

Two extremal cross sections of the Fermi surface => 
two close fundamental frequencies in MQO: 
M ~  sin(2π(F-ΔF)/B) + sin(2π(F+ΔF)/B) = 2sin(2πF/B) cos(2πΔF/B)

Fermi surface

ћωc<4t<<EF

LLs

Extremal
cross 
sections

B
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The theory of magnetic quantum oscillations in Q2d and 
the quantitative description of the slow oscillations and the 
phase-shift of beats has been given in the papers:

1. P.D. Grigoriev, M.V. Kartsovnik, W. Biberacher, N.D. Kushch, P. 
Wyder, ''Anomalous beating phase of the oscillating interlayer 
magnetoresistance in layered metals'', Phys. Rev. B 65, 60403(R) (2002).
2. M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher, N.D. Kushch, P. 

Wyder, ''Slow oscillations of magnetoresistance in quasi-two-
dimensional metals'', Phys. Rev. Lett. 89, 126802 (2002).
3. P.D. Grigoriev, ''Theory of the Shubnikov-de Haas effect in quasi-
two-dimensional metals'', Phys. Rev. B 67, 144401 (2003).

Main idea: the traditional expansion (in the Lifshitz-Kosevich formula) 
in the small parameter - the ratio of the Landau level separation and 
the band width,             , is not valid in quasi-2D metals because the 
band width in kz in q2D metals is too small.

zc th /
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What to do when the harmonics do not fall 
down rapidly with increasing their order?

For elongated in-plane Fermi surface = k20 /k00 ~1.



Yamaji angles for elliptic in-plane FS

axially-symmetric 
Fermi surface

dilation x :
x →  x

elliptic in-plane 
Fermi surface

Yamaji angles m are known. 
Being independent of , they 
satisfy the equation:

The magnetic field direction

Substituting azimuth angle after 
the dilation, ,
we obtain the new Yamaji angles:

New Yamaji angle is -dependent:
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New result 2: Exact formula for the ‐dependence of 
Yamaji angles for the elliptic in‐plane Fermi surface:

For the elliptic Fermi surface 

the Yamaji angles n
are given by the equation:  

where

For the low-symmetry electron dispersion (triclinic or monoclinic 
with the elongated FS), this formula allows to extract the ratio of the 
main axes of the FS ellipse (or how elongated FS is). 

and

(3)

max
Bp
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Comparison of the new analytical formula for elliptic FS 
with the numerical results for other shapes of FS

φ-dependence  of the first Yamaji 
angle

Very elongated but not 
elliptic Fermi surface:

Red line – result of the 
new formula,
it almost coincides with 
exact result (blue line); 
Green line – new harmonic 
expansion result; 
Magenta – old harmonic 
expansion result;

Conclusion: For any elongated FS it gives good agreement 
!
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Comparison of the analytical formulas with numerical 
results for FS with tetragonal symmetry

φ-dependence of the first Yamaji angleFermi surface

Red line – result of formula

Green line – new 
result; it coincides 
with exact result 
(blue line); Magenta
– old harmonic 
expansion result;

Conclusion: formula fails for tetragonal or hexagonal symmetries, 
where harmonic expansion is rather accurate.



Comparison with previous results

approximately coincides with the previous result of 
Yakovenko:

This explains why Eq. (4) was successfully used 
to determine the elongation parameters of the 
Fermi surface in organic metals.

New formula for the Yamaji angles 

The derivation of (4) is not applicable, but the 
formula works well for many compounds!  

(4) 



Derivation of the formula (1) in Ref. M. V. Kartsovnik, V. N. 
Laukhin, S. I. Pesotskii, I. F. Schegolev, V. M. Yakovenko, J. Phys. I 2, 89 (1992).

where the velocity, averaged over the electron orbit 

At c >>1 from the S-T integral 

and

The integral over  is assumed to be rapidly 
oscillating and is taken in the saddle-point 
approximation, which gives

This gives the condition for the N-th Yamaji angle 
(minimum of averaged velocity):

→ 

(1)
Problem: the integral (2) is not rapidly oscillating even at high tilt angle 
as in the first Yamaji angle, where it makes only one oscillation. 

(2)
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First analytical result on the azimuth‐angle dependence 
of magnetoresistance in quasi‐2D metals Rzz(,)

[ M. V. Kartsovnik, V. N. Laukhin, S. I. Pesotskii, I. F. Schegolev, V. M. 
Yakovenko, J. Phys. I 2, 89 (1992). ]

The -dependent Yamaji angles (maxima of Rzz(,) are given by equation:

Fig. 4

This simple formula is widely used to extract the in-plane FS shape
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Other results (AMRO):
1. Derivation and investigation of the applicability region of the 

relation between the angular dependence of magnetoresistance 
and of the FS cross-section area at c >>1 in quasi-2D 
compounds (tc/EF<<1):

2. Angular magnetoresistance oscillations and their fit by numerical 
calculations:
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Summary (MQO) P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010).

Analytical formulas are obtained for the , -dependence of the cross-
section area (MQO frequency), which can be used to extract the FS 
shape from experimental data on MQO in various layered high-Tc 
superconductors. We also suggests the optimal B-direction for the 
observation of the angular dependence of MQO.

Thank you for the attention!

1. Harmonic expansion:

2. The formula for the  - dependence of Yamaji angles for elliptic FS, 
which also works well for any elongated FS.

Applicable to elliptic and elongated in-plane FS:



Background (classical) magnetoresistance in 
normal 3D metals (strong fields)

In strong magnetic field the magnetoresistance depends on the 
shape and topology of the Fermi surface (FS), because at c>>1 
the electrons can encircle the FS before being scattered.

Introduction

The conductivity tensor 
for closed trajectories 

For open trajectories  
(open orbit along x-axis)
the conductivity tensor is

FS, containing 
open and closed 
trajectories

A1



Background magnetoresistance in q2D. 
Shockley tube-integral formula for conductivity.

Introduction A10

Kinetic equation for electron distribution function g in magnetic field in 
the –approximation in Q2D metals is

The solution of this equation is

The convenient coordinates for electrons in magnetic field in 
momentum space are: energy E, momentum along magnetic 
field kH and the phase along the closed electron trajectory ) 

Integration of this distribution function over the momentum space 
gives the Shockley tube-integral formula for conductivity

B



Background magnetoresistance in q2D. 
Shockley tube-integral formula for conductivity.

Introduction A10

Kinetic equation for electron distribution function g in magnetic field in 
the –approximation in Q2D metals is

The solution of this equation is

The convenient coordinates for electrons in magnetic field in 
momentum space are: energy E, momentum along magnetic 
field kH and the phase along the closed electron trajectory ) 

Integration of this distribution function over the momentum space 
gives the Shockley tube-integral formula for conductivity

B



Many papers are devoted to the analytical theory on the 
polar-angle -dependence of magnetoresistance  and MQO 
frequency for the axially-symmetric electron dispersion

ε(p)=p72/2m 7 +2tz cos(kzd). 

simplifies and in the first order in tz gives
R. Yagi et al., J. Phys. Soc. Jap. 59, 3069 (1990)

which gives AMRO:

Then Shockley tube integral

From AMRO one determines kF , which 
is compared with the MQO data.

Introduction A12



Geometrical interpretation of the 
angular magnetoresistance oscillations in q2D

Introduction

Fermi surface

LLs

Extremal
cross 
sections

BGeometrical 
interpretation 
of  the Yamaji 
angles in 
quasi-2D 
metals

Fermi surface

LLs

Extremal
cross 
sections

B

Cross section area and the electron 
dispersion have strong kz-dependence

Cross section area and the electron 
dispersion are almost kz-independent

B^conducting layers Inclined magnetic field

A11

Conductivity (very roughly) is proportional to the mean square velocity 
integrated over the whole Fermi surface :  

FSzzz ve 22 
,// zzz kAkv   where A is the cross-section area of the 

Fermi surface by the plane ^B

Below I will derive 
that at c >>1



Angular dependence of background magnetoresistance

Reconstruction 
of the FS in 
Tl2201 from 
polar AMRO 
data.

N. E. Hussey et al., "A coherent 3D Fermi 
surface in a high-Tc superconductor", 
Nature 425, 814 (2003)
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Difficulties with the numerical calculation of AMRO

! The numerical calculation of the S-T integral is hard, because

1)At high tilt angle the FS cross section includes additional closed 
pockets due to multiple intersection with FS. 
2)The integration variable  differs from the azimuth angle . This 
difference must be thoroughly taken into account.
3)At each step of 3D integration one needs to solve the nonlinear 
algebraic equation to determine kz at the point on the FS intersection 
with the plane ^ B. 
4)The calculation gives szz(,) for the known electron dispersion, 
while we need to solve the inverse problem. The fitting procedure takes 
too many fitting parameters and becomes ambiguous.

Can we avoid these complications?
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Derivation of relation (5) between magnetoresistance 
and FS cross‐section area

We start from the Shockley tube integral:

At c >>1 it simplifies to

The integral

The derivative
and from 

Combining this we get 
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New result 1: Derivation of relation between the angular 
dependence of magnetoresistance and of the FS cross-section area

Its applicability region. 

At c >>1(strong magnetic field and in pure samples) and tz<<EF, 
the interlayer conductivity szz(,) is related to the kz-dependence 
of the FS cross-section area A as

This result relates the calculations of the 
, - dependence of cross-section area 
with the magnetoresistance. The positions 
and the -dependence of the Yamaji 
angles are the same.
This relation works well even at c ~1,
as show numerical calculations.

(5)

Fermi surface

LLs

Extremal
cross 
sections

B

B1



Numerically calculated angular dependence of conductivity 
szz(,) for several c at two different azimuth angles.

These plots show that the relation between the angular dependence of 
magnetoresistance and of cross-section area works well at c >ª2.

They also show that the saturation value of conductivity at →/2 is strongly 
-dependent and can be used to extract the in-plane FS shape. 
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j
AMRO in NCCO
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Phase diagram of high-Tc cuprate SC. 
High Tc and quantum phase transition 

Nd2-xCexCuO4

(NCCO)

n = 0.17
Sh = 41.5% of SBZ

Original FS:

Theory predicts shift 
of the QPT point in 
SC phase? How 
strong is this shift?

Reconstructed FS:

n = 0.15 and 0.16

Sh  1.1% of SBZ;
0.15  64 meV;
0.16  36 meV



Doping dependence of the Fermi surface
(experimental data obtained from MQO)

0.15
0.16

Fermi surface for x = 0.15 and 0.16 appears to 
be very different from that for x = 0.17

x = 0.15

x = 0.16

x = 0.17

0.17

Phase diagram of 
electron-doped 
superconductor 
Nd2-xCexCuO4

Fourier transform of MQO data



n = 0.17,  strong overdoping

F = 10700 300 T SFS = 0.405  0.01 SBZ

0.0158 0.0160 0.0162 0.0164
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SdH oscillations in 
Nd2-xCexCuO4

n = 0.15 (optimal doping)

F = 290 T 
 SFS = 2eF/h = 0.011SBZ

very small FS! 



Summary (MQO) P.D. Grigoriev, Phys. Rev. B 81, 205122 (2010).

Analytical formulas are obtained for the , -dependence of the cross-
section area (MQO frequency), which can be used to extract the FS 
shape from experimental data on MQO in various layered high-Tc 
superconductors. We also suggests the optimal B-direction for the 
observation of the angular dependence of MQO.

Thank you for the attention!

1. Harmonic expansion:

2. The formula for the  - dependence of Yamaji angles for elliptic FS, 
which also works well for any elongated FS.

Applicable to elliptic and elongated in-plane FS:



Other results (AMRO):
1. Derivation and investigation of the applicability region of the 

relation between the angular dependence of magnetoresistance 
and of the FS cross-section area at c >>1 in quasi-2D 
compounds (tc/EF<<1):

2. Angular magnetoresistance oscillations and their fit by numerical 
calculations:
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