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The schematic setup
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e The wire is in equilibrium at temperature T
e Electrons are injected with the energy E >> T

e Electrons interact with a thermostat. They can only loose energy, not gain!

We are interested in the distribution function of the transmittance 7
over the ensemble of disordered wires

T x exp{—as}, a=2L/a>1
For the direct elastic tunneling (short wires) s is sharply distributed near s=1

For the multi-hop inelastic tunneling (long wires) the distribution of s is wide,
with a strong tail at small S.



The more detailed setup
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The injector is strongly biased (eV >> T) and/or hot (T ;, >>T).

The rest of the system is in equilibrium and cold

Nonequilibrium probe particle in an equilibrium environment



Standard setup: the linear hopping conduction

The left reservoir is biased.
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Ir x exp{—T,/27 1o =1/ga

e g is the density of states at the Fermi level in the wire
e a is the radius of the localized states

The result does not obey the Mott law: [ ~ exp {—c_-.ﬁ/TD/'T} (in 1D)

The reason: special role of local fluctuations of the density of states (1D specifics)

Equilibrium probe particle in an equilibrium environment



Standard setup: the nonlinear hopping conduction
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If eV is large, then the wire is far from equilibrium:

Ir o exp {— \/"ST.;. _,feéfrj;} E=V/L

Nonequilibrium probe particle in an nonequilibrium environment



Diffusion of photo-excited carriers

&
° E

Er

A particle is created in a localized state with energy E >> T

A closely related problem!
Here the particle also can hop from one localized state to another
with a loss of energy.



Diffusion of photo-excited carriers
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Then it hops to the closest (in space) localized state
with energy €r < €1 < E



Diffusion of photo-excited carriers
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Then -- to the closest (in space) localized state
withenergy ep < €9 < €1



Diffusion of photo-excited carriers
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Then -- to the closest (in space) localized state
withenergy ep < €3 < €9



Diffusion of photo-excited carriers
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This is a kind of "diffusion’’ with exponentially increasing steps:
ﬁ‘fi_'_]_ ~ Q.ﬁi.‘i q > 1

The averaged (over configurations) density of particles decays as a power law:

n(x) ~ | — xglP



Why the "diffusional’ approach
is not applicable to our problem?
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If the starting point is close to the left reservoir, then, in a typical configuration, the
“fully natural path” definitely leads to the left reservoir.

To get to the right one, the particle should exercise ""non-natural’’ hops to the non-closest
neighbors. The probability of such deviations is exponentially small.

Thus, the probability ‘7 to get to the right reservoir from the left one
is exponentially small for a typical configuration

However, the diffusional approach gives a power law: T ~ L= forthe average]

This paradox is due to anomalous contribution of very rare configurations
with a fully natural path, crossing the wire

7 is not arepresentative quantity!!



The kinetic equation
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The population numbers T

The transition rates j::?_}i

j>i

Poow=P_.r+P_.p+ Z P,_.;. - the total escape rate.

Jj<i
R}.—_A . .
-- the recursive solution.

- .P_11—|— : -ﬂ-',."ll.fin
(ni/Iin) = - ZJH( - )
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T = IH.//fin = Pﬁ__;;;: + Z Pi__xjg(ﬂ-i'/fin). -- the transmittance




The exponential approximation”

o | |
P = ﬂ__ﬂi(;—”.j — ;) exp{ —2L|z; — z;|/a}

If one keeps only the exponential factors, then
P < B(eg; — ;) exp{ —alz; — x5} a=2L/a > 1.

e In the exponential approximation the sum in the r.h.s. of the kinetic equation
s dominated by single term with the largest exponent

e In the exponential approximation the details of the interaction with the
thermostat (Pji(aj —£;)) are irrelevant. Only the order in the sequence
of levels matters, not their particular values.

e In the exponential approximation the transmittance “7 is dominated by
a single path in the set of quasiresonances -- the optimal staircase.



The optimal staircase ()
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e The staircase S is a monotonically descending sequence of K quasiresonances:

hy T Ehy T oo o T Egy Thyy 2 Ty = .0 > Tiye

e The optimal staircase S.p:(C) can only be “irreducible”:
no additional quasiresonances can be incorporated.



The optimal staircase (ll)
e The optimal staircase Sop:(C) provides the maximum X(C) to X(S|C) where

X(S|C) = E \i, (C), \;:(C) = min {;1;1-T 1 — z;, min{|z; — ;1:j|}} T
S o J<t
__rl[l:il“r

\i(C) is the distance from the quasiresonance i to the closest object
with lower energy (other quasiresunance or a reservoir) , so that the escape rate

P,_out o< exp{—ay;}

e The transmittance 7T (() o exp{—as(C)} isgivenby s(C)=1— X(C)
N 1

e The distribution function  Fy(s) = Hf dx;0]s — s(C)].
i=1 0

e At given E the number N of quasiresonances is not fixed, but obeys
the Poissonian distribution with N ~ ¢gLE
The ""grand-canonical” distribution tor s

F5r(s) = 2 Fnis _]_-“ﬁ._-'N exp(—N) /N
N=0



The optimal staircase (lll). Scaling?
An assumption about the self-similarity in the structure of the optimal staircase.

e Introduce the relative position £; =z, /xp,
of the i-th quasiresonance in the optimal staircase

e Let Pi(f;) be the distribution function for f_;

e The scaling assumption would mean F; = F

e Immediate consequence: the number of hops in the optimal staircase
& K(N)~InN

2.5 |

The check of scaling
in numerical experiment

The scaling works only very
roughly




The optimal staircase. Scaling or not?
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The scaling-like optimal staircase The realistic optimal staircase

e The few last hops are scaling-like (they are most important for s)

e Many short hops at the left end on the staircase are roughly equidistant.
They determine the large-N corrections



The results: short wires.

(analytical)

Grand-canonical
distribution functions F5(s)

for moderate
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Distribution funi Fp; (5)
with fixed N for n=1 and N=2

N < 10 (numerical)



The results: long wires.

Distribution functions
for large N (numerical)

For large N there is no
difference between Fy(s)
and grand-canonical F3(s)

e The distribution is wide

o F_.w.,rl::S] = Fx I::S] fOf' N>200

e Forsmalls F._(s)~bs, (b=29).



The origin of the small-s asymptotics

- - ‘ “"Fortunate configuration”:
- n last hops are the natural ones .

X< s XNeo N X, X, /I X

e |t can be analytically shown that the probability to have such a configuration
is proportional to s

e In such a configuration the optimal staircase is very close to the natural path.

e The average transmittance is dominated just by these rare fortunate configurations
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Large N corrections: the open question
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e Average s as a function of N e Average number of hops in the
optimal staircase as a function of N

Empirical formulas: no analytical derivation.
Sy /= 02374+ 0.5981In N/N, for N = 1.
K(N) = 039In* N + 2.4, for N =1

These results contradict the scaling assumption. No alternative theory so far!



The summary

e The distribution function for s (the logarithm of the transmittance 7 ) is wide,
the typical ‘] is exponentially small in L.

e The average s is suppressed compared to the elastic case by the factor 0.237

e There is a huge linear tail in the distribution at small s, that dominates
the average transmittance 7 which decays only as L™*

e Open question: the structure of the optimal staircase and large-N corrections.

e Physical manifestations:

Biased injector: jumps in the current.

Hot injector: no electron-hole symmetry --- large thermocurrent.

Multi-wire setup: sharpening of the distribution

Current-current correlations for the same sample at different parameters:
The injector voltage
The chemical potential in the wire
The spatial positions of contacts



