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●The wire is in equilibrium at temperature T

● Electrons interact with a thermostat. They can only loose energy, not gain!

Disordered wire

All the states are localizedInjected current Transmitted current

Reflected current

● Electrons are injected with the energy E  >> T

We are interested in the distribution function of the transmittance
over the ensemble of disordered wires 

The schematic setup

For the direct elastic tunneling (short wires) s is sharply distributed near s=1

For the multi-hop inelastic tunneling (long wires) the distribution of s is wide, 
with a strong tail at small s.



The more detailed setup

The injector is strongly biased (eV >> T) and/or hot (T    >> T).in

The rest of the system is in equilibrium and cold

Nonequilibrium probe particle in an equilibrium environment



Standard setup: the linear hopping conduction

If eV is small, then the wire is close to equilibrium:

● g is the density of states at the Fermi level in the wire
● a is the radius of the localized states

The result does not obey the Mott law:

The reason: special role of local fluctuations of the density of states (1D specifics) 

(in 1D)

Kurkijarvi (1973);         Raikh and Ruzin (1989)

Equilibrium probe particle in an equilibrium environment

The left reservoir is biased.



Standard setup: the nonlinear hopping conduction

If eV is large, then the wire is far from equilibrium:

The left reservoir is biased.

Nguen and Shklovskii (1981);   
Natterman, Giamarchi, and Le Doussal (2003);
Fogler and Kelley (2005).

Nonequilibrium probe particle in an nonequilibrium environment



Diffusion of photo-excited carriers

A particle is created in a localized state with energy E >> T

A closely related problem!
Here the particle also can hop from one localized state to another

with a loss of energy.



Diffusion of photo-excited carriers

Then it hops to the closest (in space) localized state 
with energy 



Diffusion of photo-excited carriers

Then -- to the closest (in space) localized state 
with energy 



Diffusion of photo-excited carriers

Then -- to the closest (in space) localized state 
with energy 



Diffusion of photo-excited carriers

This is a kind of ``diffusion’’ with exponentially increasing steps:

The averaged (over configurations) density of particles decays as a power law:

et cetera…

Shklovskii, Fritzsche, and Baranovskii (1989)



Why the ``diffusional’’ approach 
is not applicable to our problem?

Thus, the probability         to get to the right reservoir from the left one 
is exponentially small for a typical configuration

If the starting point is close to the left reservoir, then, in a typical configuration, the 
``fully natural path’’ definitely leads to the left reservoir.  

To get to the right one, the particle should exercise ``non-natural’’ hops to the non-closest 
neighbors. The probability of such deviations is exponentially small.

However, the diffusional approach gives a power law:            for the average  

This paradox is due to anomalous contribution of very rare configurations
with a fully natural path, crossing the wire

is not  a representative quantity!!



The kinetic equation
N ``quasiresonances’’

for

The transition rates

The population numbers

-- the total escape rate.

-- the recursive solution.

-- the transmittance



The ``exponential approximation’’

If one keeps only the exponential factors, then

● In the exponential approximation the sum in the r.h.s. of the kinetic equation
Is dominated by single term with the largest exponent

● In the exponential approximation the  details of the interaction with the 
thermostat  (                    ) are irrelevant.  Only  the order in the sequence 
of levels matters, not their particular values. 

● In the exponential approximation the transmittance          is dominated by  
a single path in the set of quasiresonances -- the optimal staircase.



● The staircase      is a monotonically descending sequence of  K quasiresonances:

The optimal staircase (I)

● The optimal staircase               can only be ``irreducible’’: 
no additional quasiresonances can be incorporated.

The configuration
is fixed

Different staircases
are shown:
(b) – reducible,
(c) – irreducible.



● The transmittance                                          is given by

The optimal staircase (II)
● The optimal staircase               provides the maximum       to where

is the distance from the quasiresonance  i to the closest object 
with lower energy (other quasiresunance or a reservoir) , so that the escape rate

● The distribution function

● At given E the number N of quasiresonances is not fixed, but obeys 
the Poissonian distribution with                    
The ``grand-canonical’’ distribution  for s 



The optimal staircase (III).   Scaling?
An assumption about the self-similarity in the structure of the optimal staircase.    

● Introduce  the relative position 
of the i-th quasiresonance in the optimal staircase

● Let            be the distribution function for

● The scaling assumption  would mean

The scaling  works only very
roughly

The check of scaling 
in numerical experiment

● Immediate consequence: the number of hops in the optimal staircase



The optimal staircase.   Scaling or not?

The realistic optimal staircase

● The few last hops are scaling-like  (they are most important for s)

The scaling-like optimal staircase

● Many short hops at the left end on the staircase are roughly equidistant. 
They determine the large-N corrections



The results: short wires.

Distribution functions 
with fixed N  for N=1 and N=2
(analytical)

Grand-canonical 
distribution functions
for moderate                        (numerical) 



The results: long wires.

Distribution functions 
for large N (numerical)

For large N there is no 
difference between
and grand-canonical

● for N>200 

● The distribution is wide

● For small s



The origin of the small-s asymptotics

``Fortunate configuration’’:
n last hops are the natural ones .

● It can be analytically shown that the probability to have such a configuration  
is proportional to s

● In such a configuration the optimal staircase is very close to the natural path. 

● The average transmittance is dominated just by these rare fortunate configurations



Large N corrections: the open question

● Average s as a function of N

Empirical formulas: no analytical derivation.

● Average number of hops in the 
optimal staircase as a function of N

These results contradict the scaling assumption. No  alternative theory so far!



The summary

● The distribution function for  s (the logarithm of the transmittance     ) is wide, 
the typical      is exponentially small in L.

● The average  s is suppressed compared to the elastic case by the factor 0.237

● There is a huge linear tail in the distribution  at small  s,  that dominates 
the average transmittance       , which decays only as 

● Open question: the structure of the optimal staircase and large-N corrections. 

● Physical manifestations:
Biased injector: jumps in the current.
Hot injector:  no electron-hole symmetry --- large thermocurrent.
Multi-wire setup: sharpening of the distribution
Current-current correlations for the same sample at different parameters:

The injector voltage
The chemical potential in the wire
The spatial positions of contacts


