

Kylmälaboratorio Lågtemperaturlaboratoriet Low Temperature Laboratory

Supercurrent in superconducting graphene

N. B. Kopnin

LTL Aalto University, Finland and Landau ITP, Moscow

and

E.B. Sonin

Racah Institute of Physics, Hebrew University of Jerusalem, Israel

Outline

Electronic structure in the normal state
 Possible superconducting state
 BdG Dirac equations for SC graphene

Problem of supercurrent

Electronic properties

Figure 1 (Color online) Graphene (top left) is a honeycomb lattice of carbon atoms. Graphite (top right) can be viewed a stack of graphene layers. Carbon nanotubes are rolledup cylinders of graphene (bottom left). Fullerenes (C₆₀) are molecules consisting of wrapped graphene by the introduction of pentagons on the hexagonal lattice (Castro Neto *et al.*, 2006a).

Normal properties: Novoselov et al., Nature (2005)

Electronic structure in the normal state

Tight-binding Hamiltonian

$$H = -t \sum_{i,j,\sigma} \left[\Psi_2^{\dagger}(\sigma, \mathbf{R}_i) \Psi_1(\sigma, \mathbf{R}_j) + \Psi_1^{\dagger}(\sigma, \mathbf{R}_j) \Psi_2(\sigma, \mathbf{R}_i) \right]$$
$$-t' \sum_{i,j,\sigma} \left[\Psi_1^{\dagger}(\sigma, \mathbf{R}_i) \Psi_1(\sigma, \mathbf{R}_j) + \Psi_2^{\dagger}(\sigma, \mathbf{R}_j) \Psi_2(\sigma, \mathbf{R}_i) + h.c. \right]$$

 $\Psi_2^{\dagger}(\sigma, \mathbf{R}_i)$ creates a particle with spin σ at a site \mathbf{R}_i of the sublattice 2 $\Psi_1(\sigma, \mathbf{R}_j)$ annihilates a particle with spin σ at a site \mathbf{R}_j of the sublattice 1. The first sum runs over the nearest neighbor sites in different sublattices

$$\mathbf{R}_i = \mathbf{R}_i + \boldsymbol{\delta}_n , n = 1, 2, 3$$

The second sum is over the next-nearest neighbors in the same sublattices.

Spectrum near the Dirac points

$$|E - E_c| \approx \sqrt{3}\pi\gamma_0 a |\mathbf{k} - \mathbf{k}_c| \qquad (3.1)$$

Wallace (1947)

McClure (1957), Slonczewski and Weiss (1958)

Review: Castro Neto et al., Rev. Mod. Phys. v.81,109 (2009); arXiv:0709.1163

Near the corner points

 $\pm {\bf K}$ in the Brillouin zone, $|{\bf k}| \ll a^{-1}$

$$\begin{split} \Psi_{1}(\mathbf{R}_{i}) &= \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} \left[e^{i(\mathbf{K}+\mathbf{k})\cdot\mathbf{R}_{i}} \Psi_{1}(\mathbf{k}) + e^{i(-\mathbf{K}+\mathbf{k})\cdot\mathbf{R}_{i}} \bar{\Psi}_{1}(\mathbf{k}) \right] \\ H &= v_{F} \left[\hat{\Psi}^{\dagger}(\mathbf{r})(\hat{\boldsymbol{\sigma}} \cdot \check{\mathbf{p}}) \hat{\Psi}(\mathbf{r}) - \hat{\bar{\Psi}}^{\dagger}(\mathbf{r})(\hat{\boldsymbol{\sigma}}^{*} \cdot \check{\mathbf{p}}) \hat{\bar{\Psi}}(\mathbf{r}) \right] , \ v_{F} &= 3at/2 \\ \hat{\Psi} &= \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} , \ \hat{\Psi}^{\dagger} &= \begin{pmatrix} \Psi_{1}^{\dagger} , \Psi_{2}^{\dagger} \end{pmatrix} , \ \check{\mathbf{p}} &= -i\hbar\boldsymbol{\nabla} \end{split}$$

Schrödinger equations

Near \mathbf{K}

Near $-\mathbf{K}$

$$v_F(\hat{\boldsymbol{\sigma}} \cdot \check{\mathbf{p}})\hat{\Psi}(\mathbf{r}) = E\hat{\Psi}(\mathbf{r}) \qquad -v_F(\hat{\boldsymbol{\sigma}}^* \cdot \check{\mathbf{p}})\hat{\bar{\Psi}}(\mathbf{r}) = E\hat{\bar{\Psi}}(\mathbf{r})$$

$$\bar{\Psi}_1 \to -\Psi_2 \text{ and } \bar{\Psi}_2 \to \Psi_1$$

Superconducting state

A hole excitation $\hat{\Psi}^{h}_{\mathbf{K}}$ at $\mathbf{K} \Rightarrow \hat{\overline{\Psi}}^{\dagger}$ for the excitation at $-\mathbf{K}$,

$$v_F(\boldsymbol{\sigma}\cdot\check{\mathbf{p}})\hat{\Psi}^h_{\mathbf{K}}(\mathbf{r}) = E\hat{\Psi}^h_{\mathbf{K}}(\mathbf{r})$$

Energy of particles and holes is measured from chemical potential μ ,

 $E = \mu \pm \epsilon$

$$v_F(\boldsymbol{\sigma} \cdot \check{\mathbf{p}}) \hat{\Psi}^e_{\mathbf{K}}(\mathbf{r}) = (\mu + \epsilon) \hat{\Psi}^e_{\mathbf{K}}(\mathbf{r})$$
$$v_F(\boldsymbol{\sigma} \cdot \check{\mathbf{p}}) \hat{\Psi}^h_{\mathbf{K}}(\mathbf{r}) = (\mu - \epsilon) \hat{\Psi}^h_{\mathbf{K}}(\mathbf{r})$$

In the presence of magnetic field,

$$v_F \boldsymbol{\sigma} \cdot \left(\check{\mathbf{p}} - \frac{e}{c} \mathbf{A} \right) \hat{\Psi}_{\mathbf{K}}^e(\mathbf{r}) = (\mu + \epsilon) \hat{\Psi}_{\mathbf{K}}^e(\mathbf{r})$$
$$v_F \boldsymbol{\sigma} \cdot \left(\check{\mathbf{p}} + \frac{e}{c} \mathbf{A} \right) \hat{\Psi}_{\mathbf{K}}^h(\mathbf{r}) = (\mu - \epsilon) \hat{\Psi}_{\mathbf{K}}^h(\mathbf{r})$$

The Bogoliubov–de Gennes equations

$$v_F \hat{\boldsymbol{\sigma}} \cdot \left(-i\boldsymbol{\nabla} - \frac{e}{c}\mathbf{A} \right) \hat{u} + \Delta \hat{v} = (E+\mu)\hat{u}$$
$$v_F \hat{\boldsymbol{\sigma}} \cdot \left(i\boldsymbol{\nabla} - \frac{e}{c}\mathbf{A} \right) \hat{v} + \Delta^* \hat{u} = (E-\mu)\hat{v}$$

Uchoa, et al. (2005); Beenakker, Rev. Mod. Phys. (2008)

Induced superconductivity

Sato et al. Physica E (2008)

Fig. 1. (a) A scanning electron micrograph of sample A. (b) A schematic side view of the samples. The gray region indicates the graphene layers (thickness $\sim 0.5-1$ nm) in which the carrier concentration is expected to be modulated by the gate voltage.

Fig. 2. The zero-bias resistance of sample A as a function of temperature. The resistance at $V_g = -70$, -35, 0 V is indicated by filled symbols and that at $V_g = 35$, 70 V is indicated by open symbols. The inset shows the gate-voltage dependence of the normal-state resistance. At $V_g = V_g^p \approx 15 \text{ V}$, the normal-state resistance takes the maximum value.

Induced SC transition in graphene

Intrinsic superconductivity

Order parameter

neter
$$\Delta = V \sum_{\mathbf{k}}' \left[\left\langle \Psi_{1,\downarrow}^{h\dagger}(\mathbf{k}) \Psi_{1,\uparrow}^{e}(\mathbf{k}) \right\rangle + \left\langle \Psi_{2,\downarrow}^{h\dagger}(\mathbf{k}) \Psi_{2,\uparrow}^{e}(\mathbf{k}) \right\rangle \right]$$

Various mechanisms of pairing

Phonon, Plasmon: RVB: Phonons+edge states: Hubbard model: Uchoa, Castro Neto (2007), Black-Schaffer, Doniack (2007), Sasaki et al (2007) Zhao, Paramekanti (2006)

Normal-state spectrum

Electron spectrum

$$\xi_{\mathbf{p}} = \pm vp - \mu$$

for spin states parallel and aniparallel to the momentum

$$\hat{a}_{\uparrow} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \sqrt{\frac{p_x - ip_y}{p}} \\ \sqrt{\frac{p_x + ip_y}{p}} \end{array} \right) \ , \ \hat{a}_{\downarrow} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \sqrt{\frac{p_x - ip_y}{p}} \\ -\sqrt{\frac{p_x + ip_y}{p}} \end{array} \right)$$

Model description of SC

K & Sonin, PRL (2008)

Current carrying state

$$\Delta = |\Delta| e^{i\mathbf{k}_s \mathbf{r}} , \mathbf{k}_s = \nabla \chi$$
$$u(\mathbf{r}) = u_{\mathbf{p}} e^{i\mathbf{p}_+ \cdot \mathbf{r}/\hbar} , v(\mathbf{r}) = v_{\mathbf{p}} e^{i\mathbf{p}_- \cdot \mathbf{r}/\hbar} , \mathbf{p}_{\pm} = \mathbf{p} \pm \hbar \mathbf{k}_s/2$$

BdG equations

$$\xi_{\mathbf{p}}u_{\mathbf{p}} + \Delta v_{\mathbf{p}} = E_{\mathbf{p}}u_{\mathbf{p}}$$
$$-\xi_{\mathbf{p}}v_{\mathbf{p}} + \Delta^* u_{\mathbf{p}} = E_{\mathbf{p}}v_{\mathbf{p}}$$

For $k_s \ll \xi_0^{-1} \sim \Delta_0 / v$ within the first-order terms in vk_s

$$u_{\mathbf{p}} = \frac{1}{\sqrt{2}} \sqrt{1 + \frac{\xi_{\mathbf{p}}}{E_{\mathbf{p}}^{(0)}}} , v_{\mathbf{p}} = \frac{1}{\sqrt{2}} \sqrt{1 - \frac{\xi_{\mathbf{p}}}{E_{\mathbf{p}}^{(0)}}}$$

$$E_{\mathbf{p}} = E_D + E_{\mathbf{p}}^{(0)}, \ E_{\mathbf{p}}^{(0)} = \sqrt{\xi_{\mathbf{p}}^2 + |\Delta|^2}, \ \xi_{\mathbf{p}} = \pm v_F p - \mu$$

Doppler energy

$$E_D = rac{d\xi_p}{d\mathbf{p}} rac{\hbar \mathbf{k}_s}{2} = \pm rac{\hbar v_F(\mathbf{p} \cdot \mathbf{k}_s)}{2p}$$

Current

$$\mathbf{j} = 2e \sum_{\mathbf{p}} \left[\frac{\partial \xi_{\mathbf{p}_{+}}}{\partial \mathbf{p}} |u_{\mathbf{p}}|^{2} n(E_{\mathbf{p}}) - \frac{\partial \xi_{\mathbf{p}_{-}}}{\partial \mathbf{p}} |v_{\mathbf{p}}|^{2} [1 - n(E_{\mathbf{p}})] \right]$$

Linear response for small $E_D \ll \Delta_0$

$$\mathbf{j} = e \int \frac{d^2 p}{4\pi^2 \hbar} \frac{\partial \xi_{\mathbf{p}}}{\partial \mathbf{p}} \left(\frac{\partial \xi_{\mathbf{p}}}{\partial \mathbf{p}} \cdot \mathbf{k}_s \right) \frac{\partial}{\partial \xi_{\mathbf{p}}} \left[\frac{\xi_{\mathbf{p}}}{2E_{\mathbf{p}}^{(0)}} [1 - 2n(E_{\mathbf{p}}^{(0)})] \right] + 2e \int \frac{d^2 p}{4\pi^2 \hbar^2} \frac{\partial \xi_{\mathbf{p}}}{\partial \mathbf{p}} \left[n(E_{\mathbf{p}}) - n(E_{\mathbf{p}}^{(0)}) \right]$$

$$\Lambda\left(0,\frac{1}{|\Delta|}\right) = \tanh\frac{|\Delta|}{2T} = \begin{cases} |\Delta|/2T_c, & T \to T_c\\ 1, & T \to 0 \end{cases}$$

Current is finite at T=0 As distinct from: Uchoa, Cabrera, & Castro Neto (2005)

Uchoa, Cabrera, & Castro Neto (PRB, 2005)

FIG. 16. London kernel dependence with temperature in the cone approximation $(g/g_c=1.1)$. Plots for $0 \le |\mu|/\alpha \le 0.16$, from the bottom to the top, in fixed intervals of 0.02. $Q(0)-Q(\Delta_s)$ in units of $e^2 v_F \alpha/(2\pi dv_\Delta c)$. (In our case $\alpha \equiv \xi_m$, $v_\Delta = v_F$)

Current vanishes for $\mu \rightarrow 0$

Supercurrent at T<<∆

$$\mathbf{j} = ev^2 \sum_{\mathbf{p}} \mathbf{n} \left(\mathbf{n} \cdot \mathbf{k}_s \right) \frac{\partial}{\partial \xi_{\mathbf{p}}} \left[\frac{\xi_{\mathbf{p}}}{2E_{\mathbf{p}}^{(0)}} \right]$$

Supercurrent is finite despite the zero DOS at $\xi
ightarrow 0$

Microscopic description of the current-carrying state

$$\hat{u}_{\mathbf{p}} = \hat{u}e^{i(\mathbf{p}+\mathbf{k}/2)\cdot\mathbf{r}} , \ \hat{v}_{\mathbf{p}} = \hat{v}e^{i(\mathbf{p}-\mathbf{k}/2)\cdot\mathbf{r}} , \ \Delta = |\Delta|e^{i\mathbf{k}\cdot\mathbf{r}}$$

BdG equations

$$v_F \hat{\boldsymbol{\sigma}} \cdot (\mathbf{p} + \mathbf{k}/2)\hat{u} + \Delta \hat{v} = (E + \mu)\hat{u} ,$$

$$-v_F \hat{\boldsymbol{\sigma}} \cdot (\mathbf{p} - \mathbf{k}/2)\hat{v} + \Delta^* \hat{u} = (E - \mu)\hat{v} .$$

Supercurrent

$$\mathbf{j} = 2ev_F \sum_{\mathbf{p},\alpha} \left[\hat{u}_{\mathbf{p},\alpha}^{\dagger} \hat{\boldsymbol{\sigma}} \hat{u}_{\mathbf{p},\alpha} f_{\mathbf{p},\alpha} - \hat{v}_{\mathbf{p},\alpha}^{\dagger} \hat{\boldsymbol{\sigma}} \hat{v}_{\alpha} (1 - f_{\mathbf{p},\alpha}) \right] .$$

$$\mathbf{j} = -ev_F \sum_{\mathbf{p},\alpha} \left[\hat{u}_{\mathbf{p},\alpha}^{\dagger} \hat{\boldsymbol{\sigma}} \hat{u}_{\mathbf{p},\alpha} + \hat{v}_{\mathbf{p},\alpha}^{\dagger} \hat{\boldsymbol{\sigma}} \hat{v}_{\alpha} \right] (1 - 2f_{\mathbf{p},\alpha})$$

$$\mathbf{j}=\int rac{d^2p}{(2\pi)^2}\left[\mathbf{j_K}(\mathbf{p})+\mathbf{j_{-K}}(\mathbf{p})
ight]$$

$$\mathbf{j}_{\mathbf{K}}(\mathbf{p}) = -ev_F \sum_{\alpha=1}^{4} \hat{u}_{\mathbf{p},\alpha}^{\dagger} \hat{\boldsymbol{\sigma}} \hat{u}_{\mathbf{p},\alpha} \left[1 - 2f_{\mathbf{p},\alpha}\right]$$

$$\mathbf{j}_{-\mathbf{K}}(\mathbf{p}) = -ev_F \sum_{\alpha=1}^{4} \hat{v}_{\mathbf{p},\alpha}^{\dagger} \hat{\boldsymbol{\sigma}} \hat{v}_{\mathbf{p},\alpha} \left[1 - 2f_{\mathbf{p},\alpha}\right]$$

Zero-current ground state

Define spinors that satisfy

$$(\hat{oldsymbol{\sigma}}\cdot\mathbf{p})\hat{a}_{\uparrow,\downarrow}=\pm p\,\hat{a}_{\uparrow,\downarrow}$$

The states with pseudospin parallel and anti-parallel to the momentum

$$\hat{a}_{\uparrow} = rac{1}{\sqrt{2}} \left(egin{array}{c} \sqrt{rac{p_x - ip_y}{p}} \\ \sqrt{rac{p_x + ip_y}{p}} \end{array}
ight) \ , \ \hat{a}_{\downarrow} = rac{1}{\sqrt{2}} \left(egin{array}{c} \sqrt{rac{p_x - ip_y}{p}} \\ -\sqrt{rac{p_x + ip_y}{p}} \end{array}
ight)$$

The spinors \hat{a}_{\uparrow} and \hat{a}_{\downarrow} are eigenstates of excitations in the normal graphene.

We introduce vectors in the Nambu space,

$$\check{\psi}=\left(egin{array}{c} \hat{u} \ \hat{v} \end{array}
ight)$$
 , $\check{\psi}^+=\left(\hat{u}^\dagger \ , \ \hat{v}^\dagger
ight)$, $\check{\psi}^+_lpha\check{\psi}_eta=\delta_{lphaeta}$

Eigen-states for zero current

For \uparrow spin $E_{1,2}^{(0)} = \pm E_{\uparrow} , E_{\uparrow} = \sqrt{(v_F p - \mu)^2 + |\Delta|^2}$ $\begin{pmatrix} \hat{u}_1^{(0)} \\ \hat{v}_1^{(0)} \end{pmatrix} = \begin{pmatrix} u_{\uparrow} \\ v_{\uparrow} \end{pmatrix} \hat{a}_{\uparrow} e^{i\mathbf{p}\cdot\mathbf{r}}, \begin{pmatrix} \hat{u}_2^{(0)} \\ \hat{v}_2^{(0)} \end{pmatrix} = \begin{pmatrix} v_{\uparrow} \\ -u_{\uparrow} \end{pmatrix} \hat{a}_{\uparrow} e^{i\mathbf{p}\cdot\mathbf{r}}$

For \downarrow spin

$$E_{3,4}^{(0)} = \pm E_{\downarrow} \,, \, E_{\downarrow} = \sqrt{(v_F p + \mu)^2 + |\Delta|^2}$$

$$\left(egin{array}{c} \hat{u}_3^{(0)} \ \hat{v}_3^{(0)} \end{array}
ight) = \left(egin{array}{c} u_\downarrow \ v_\downarrow \end{array}
ight) \hat{a}_\downarrow e^{i \mathbf{p} \cdot \mathbf{r}}, \left(egin{array}{c} \hat{u}_4^{(0)} \ \hat{v}_4^{(0)} \end{array}
ight) = \left(egin{array}{c} v_\downarrow \ -u_\downarrow \end{array}
ight) \hat{a}_\downarrow e^{i \mathbf{p} \cdot \mathbf{r}}.$$

$$egin{aligned} u_{\uparrow} &= rac{1}{\sqrt{2}} \sqrt{1 + rac{v_F p - \mu}{E_{\uparrow}}} &, v_{\uparrow} &= rac{1}{\sqrt{2}} \sqrt{1 - rac{v_F p - \mu}{E_{\uparrow}}} \ u_{\downarrow} &= rac{1}{\sqrt{2}} \sqrt{1 - rac{v_F p + \mu}{E_{\downarrow}}} &, v_{\downarrow} &= rac{1}{\sqrt{2}} \sqrt{1 + rac{v_F p + \mu}{E_{\downarrow}}} \end{aligned}$$

Current-carrying state

Spectrum

$$(E^{2} - \mu^{2})^{2} - 2|\Delta|^{2}(E^{2} - \mu^{2}) + |\Delta|^{4} + 2|\Delta|^{2}v_{F}^{2}\mathbf{p}_{+}\mathbf{p}_{-} - (E + \mu)^{2}v_{F}^{2}\mathbf{p}_{-}^{2} - (E - \mu)^{2}v_{F}^{2}\mathbf{p}_{+}^{2} + v_{F}^{4}\mathbf{p}_{+}^{2}\mathbf{p}_{-}^{2} = 0$$

where $\mathbf{p}_{\pm} = \mathbf{p} \pm \mathbf{k}/2$.

Two limiting cases

•
$$v_F k \ll \mu$$

 $E_{\alpha} = E_{\alpha}^{(0)} + E_{\alpha}^{(1)}$
 $E_{1,2}^{(1)} = -E_{3,4}^{(1)} = E_D , \ E_D = v_F (\mathbf{p} \cdot \mathbf{k})/2p$

Doppler-shifted energies

• $\mu = 0$:

$$E_{\pm}^{2} = |\Delta|^{2} + v_{F}^{2}(p^{2} + k^{2}/4) \pm \sqrt{|\Delta|^{2}v_{F}^{2}k^{2} + v_{F}^{4}(\mathbf{p}\cdot\mathbf{k})^{2}}$$

No Doppler shift

Degenerate state, $E^{\mathbf{2}}_{+}=E^{\mathbf{2}}_{-}$ for $\mathbf{k}=\mathbf{0}$

Linear response, $v_F k \ll \mu$

$$\check{\psi}_{\alpha} = \check{\psi}_{\alpha}^{(0)} + \sum_{\beta \neq \alpha} B_{\alpha\beta} \check{\psi}_{\beta}^{(0)} , \ B_{\alpha\beta} = \frac{v_F \,\check{\psi}_{\beta}^{(0)+} (\hat{\boldsymbol{\sigma}} \cdot \mathbf{k}) \check{\psi}_{\alpha}^{(0)}}{2(E_{\alpha}^{(0)} - E_{\beta}^{(0)})} , \ B_{\beta\alpha} = -B_{\alpha\beta}^*$$
$$B_{12} = B_{21} = B_{34} = B_{43} = 0$$

$$B_{13} = -B_{24} = -\frac{iv_F([\mathbf{p} \times \mathbf{k}] \cdot \mathbf{z})}{2p} \frac{(u_{\downarrow}^* u_{\uparrow} + v_{\downarrow}^* v_{\uparrow})}{E_{\uparrow} - E_{\downarrow}} ,$$

$$B_{23} = B_{14} = \frac{iv_F([\mathbf{p} \times \mathbf{k}] \cdot \mathbf{z})}{2p} \frac{(u_{\downarrow}^* v_{\uparrow} - v_{\downarrow}^* u_{\uparrow})}{E_{\uparrow} + E_{\downarrow}} .$$

Supercurrent

$$\mathbf{j} = -ev_F \sum_{\alpha,\mathbf{p}} \left[\hat{u}_{\alpha}^{(0)\dagger} \hat{\boldsymbol{\sigma}} \hat{u}_{\alpha}^{(0)} + \hat{v}_{\alpha}^{(0)\dagger} \hat{\boldsymbol{\sigma}} \hat{v}_{\alpha}^{(0)} \right] \left[1 - 2f(E_{\alpha}^{(0)} + E_{\alpha}^{(1)}) \right] -2ev_F \operatorname{Re} \sum_{\alpha \neq \beta,\mathbf{p}} B_{\alpha\beta} \left[\hat{u}_{\alpha}^{(0)\dagger} \hat{\boldsymbol{\sigma}} \hat{u}_{\beta}^{(0)} + \hat{v}_{\alpha}^{(0)\dagger} \hat{\boldsymbol{\sigma}} \hat{v}_{\beta}^{(0)} \right] \left[1 - 2f(E_{\alpha}^{(0)}) \right] .$$

Correction to the supercurrent diverges because it extends over the entire BZ

Regularization of the divergence

The current-carrying state

$$\hat{u}_{\mathbf{p}} = \hat{u}e^{i(\mathbf{p}+\mathbf{k}/2)\cdot\mathbf{r}} , \ \hat{v}_{\mathbf{p}} = \hat{v}e^{i(\mathbf{p}-\mathbf{k}/2)\cdot\mathbf{r}} ,$$

contains contributions from the overall momentum shift in the BZ.

Since $v_{\mathbf{K}}(\mathbf{p}) = u_{-\mathbf{K}}^*(-\mathbf{p})$, a homogeneous shift by \mathbf{k} gives $\mathbf{p}' \to \mathbf{p}' + \mathbf{k}$ and $u_{\mathbf{K}}(\mathbf{p}) \to u_{\mathbf{K}}(\mathbf{p} + \mathbf{k})$, $u_{-\mathbf{K}}(-\mathbf{p}) \to u_{-\mathbf{K}}(-\mathbf{p} + \mathbf{k})$

Therefore,

$$u_{\mathbf{K}}(\mathbf{p}) \rightarrow u_{\mathbf{K}}(\mathbf{p} + \mathbf{k}) , \ v_{\mathbf{K}}(\mathbf{p}) \rightarrow v_{\mathbf{K}}(\mathbf{p} - \mathbf{k})$$

Making shift of integration variable over the BZ ${\bf p}={\bf p}'-{\bf k}/2$ in the zero-order current

$$\mathbf{j}^{(0)} = \int \frac{d^2 p'}{(2\pi)^2} \left[\mathbf{j}_{\mathbf{K}}^{(0)}(\mathbf{p}' - \mathbf{k}/2) + \mathbf{j}_{-\mathbf{K}}^{(0)}(\mathbf{p}' + \mathbf{k}/2) \right]$$
$$= \int \frac{d^2 p}{(2\pi)^2} \left[\mathbf{j}_{\mathbf{K}}^{(0)}(\mathbf{p}) + \mathbf{j}_{-\mathbf{K}}^{(0)}(\mathbf{p}) - \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{p}} \right) \mathbf{j}_{\mathbf{K}}^{(0)}(\mathbf{p}) \right] .$$

Here $\mathbf{j}_{\mathbf{K}}^{(0)}(\mathbf{p}) + \mathbf{j}_{-\mathbf{K}}^{(0)}(\mathbf{p}) = 0$. As a result

$$\mathbf{j}^{(0)} = -\int \frac{d\phi}{(2\pi)^2} [(\mathbf{p} \cdot \mathbf{k}) \mathbf{j}_{\mathbf{K}}^{(0)}(\mathbf{p})]_{p \gg \Delta, T}$$

$$\mathbf{j}_{\mathbf{K}}^{(0)}(\mathbf{p}) = -ev_F \left[\frac{v_F p - \mu}{E_{\uparrow}} \tanh \frac{E_{\uparrow}}{2T} + \frac{v_F p + \mu}{E_{\downarrow}} \tanh \frac{E_{\downarrow}}{2T} \right] \frac{\mathbf{p}}{p}$$
$$\mathbf{j}_{\mathbf{K}}^{(0)}(\mathbf{p}) \Big|_{p \to \infty} = -2ev_F \left[1 + \frac{\Delta^2}{2v_F^2 p^2} \right] \frac{\mathbf{p}}{p} \to -2ev_F \frac{\mathbf{p}}{p}$$
$$(\mathbf{p} \cdot \mathbf{k}) \mathbf{j}_{\mathbf{k}}^{(0)}(\mathbf{p}) \Big|_{p \to \infty} \to -2ev_F \frac{\mathbf{p}}{p} (\mathbf{p} \cdot \mathbf{k})$$

and

$$(\mathbf{p} \cdot \mathbf{k}) \left. \mathbf{j}_{\mathbf{K}}^{(0)}(\mathbf{p}) \right|_{p \to \infty} \to -2ev_F \frac{\mathbf{p}}{p} (\mathbf{p} \cdot \mathbf{k})$$

The same result is obtained if one subtracts the normal current

For T = 0 the supercurrent becomes

$$\mathbf{j} = rac{e\mathbf{k}}{2\pi} \left[\sqrt{\mu^2 + |\Delta|^2} + rac{|\Delta|^2}{|\mu|} \ln\left(rac{|\mu| + \sqrt{\mu^2 + |\Delta|^2}}{|\Delta|}
ight)
ight]$$

• For $\mu \gg |\Delta|$

This result formally holds within the linear approximation which assumes $v_F k \ll \mu$. Therefore, one has to put $k \to 0$ first and then assume $\mu \ll |\Delta|$.

What if $\mu \ll v_F k$?

The spectrum for $\mu = 0$:

$$E_{\pm}^2 = |\Delta|^2 + v_F^2 (p^2 + k^2/4) \pm \sqrt{|\Delta|^2 v_F^2 k^2 + v_F^4 ({f p} \cdot {f k})^2}$$

No Doppler energy

The zero-current state is degenerate:

$$E_{\uparrow} = E_{\downarrow} = E_0 = \sqrt{v_F^2 p^2 + |\Delta|^2}$$

 $E_1 = E_3 = E_0 , E_2 = E_4 = -E_0$

Requires a special consideration

One can show that the linear-response results $v_F k \ll |\Delta|$ holds irrespectively of the relation between $v_F k$ and μ .

Conclusions

- No qualitative difference between the critical temperature, superconducting gap and supercurrent obtained for the simple model and for the two-valley BdG-Dirac description
 - Slightly different parametric dependence of supercurrent
 - The $\mu \gg |\Delta|$ result gives 2 times larger current than in the simple model due to two times larger number of cones.
 - However, the $\mu \ll |\Delta|$ limit gives 4 times larger current. This is due to more subtle differences originating from interference of four ground states.
- The supercurrent is finite at any doping level as long as superconductivity exists