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We designate the passive scalar field as θ.
It can represent both, temperature varia-
tions or concentration of pollutants. The
passive scalar evolution in an external flow
is described by the equation

∂tθ + v∇θ = κ∇2θ ,

where v is the flow velocity and κ is the
diffusion (thermodiffusion) coefficient. The
coefficient is assumed to be small.



At investigating the passive scalar dy-

namics the velocity can be treated as

short correlated in time and closed equa-

tions can be derived for the passive scalar

correlation functions

Fn(t, r1, . . . , rn) = 〈θ(t, r1) . . . θ(t, rn)〉 ,

obtained by averaging over times larger

than the velocity correlation time.



One can derive closed equations

∂tFn = κ
n∑

m=1
∇2
mFn

+
n∑

m,k=1

∑

αβ
∂mα

[
Dαβ(rm, rk)∂kβFn

]
,

where the object D is expressed via the

pair velocity correlation function as

Dαβ(r1, r2) =
∫ ∞
0
dt′ 〈vα(t+t′, r1)vβ(0, r2)〉 .



A z-dependence of the eddy diffusion ten-

sor components can be found directly

from the proportionality laws vx, vy ∝ z

and vz ∝ z2. Say,

Dzz(x, y, z1;x, y, z2) = µz2
1z

2
2 ,

where µ is a constant characterizing strength

of the velocity fluctuations in the periph-

eral region.



The equation for the first moment of θ
is

∂t〈θ〉 = ∂z
[
µz4∂z〈θ〉

]
+ κ∂2

z 〈θ〉 ,

Comparing two terms in RHS, one finds
a characteristic diffusion length

rbl = (κ/µ)1/4.

The quantity determines the thickness
of the diffusion boundary layer.



We are interested mainly in the passive

scalar transport through the region z �
rbl, where the passive scalar is carrying

from the diffusive boundary layer to bulk.

There we arrive at the proportionality law

〈θ〉 ∝ z−3 ,

that gives the decaying rate of the av-

erage θ as z grows.



We introduce scaling exponents for the

high passive scalar moments as well

〈θn〉 ∝ z−ηn,

at z � rbl. Would the molecular diffusion

be irrelevant there then ηn = 3. Really,

the diffusion is relevant and values of the

exponents ηn are subject of a special in-

vestigation.



 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7  8  9  10

x

z



One can define the passive scalar corre-

lation length l (along the wall), that can

be found by balance of the molecular and

the eddy diffusion along the wall:

l ∼
√
κ/µ z−1.

The quantity is of order of rbl at z ∼ rbl
and diminishes as z grows.



To exclude the effect of the molecular

diffusion, we introduce an integral of the

passive scalar field

Θ(t, z) = A−1
∫
dx dy θ(t, x, y, z) ,

where A is the area of the surface and

z is its separation from the wall. Obvi-

ously 〈Θ〉 ∝ z−3. What about high-order

moments?



Assuming that the passive scalar corre-

lation length is smaller than the velocity

one, we can derive

∂tΦn(t, z1, . . . , zn) = µ
n∑

m,k=1

∂

∂zm


z2
mz

2
k
∂

∂zk
Φn




+2µ
∑

m 6=k

∂

∂zm

(
z2
mzkΦn

)
,

Φn(t, z1, . . . , zn) = 〈Θ(t, z1) . . .Θ(t, zn)〉 .



The equation leads to the following closed

equation for the moments of the integral

passive scalar

∂t〈Θn〉 = µ
[
z4∂2

z + 4nz3∂z + 4n(n− 1)z2
]
〈Θn〉 .

The equation leads to the scaling

〈Θn〉 ∝ z−ζn, ζn = 2n−1/2+
√

2n+ 1/4 .



A natural conjecture that enables one to

relate the moments of θ and those of Θ

is in using the correlation length l as a

recalculation factor:

〈Θn〉 ∼
l(d−1)(n−1)

An−1
〈θn〉,

ηn = ζn − (n− 1)(d− 1).

Here d is dimensionality of space.



We conducted Lagrangian simulations where
dynamics of a large number of particles
subjected to flow advection and Langevin
forces (producing diffusion) is examined.
The set of the particles is used instead
of the passive scalar field θ, that can be
treated as density of the particles. A big
advantage of the approach is its applica-
bility to a number of space dimensions
d.



In our scheme a particle trajectory %(t)

obeys the equation

∂t% = v(t, %) + ζ(t),

where the first term represents the parti-

cle advection and the second term repre-

sents the Langevin force. The variables

ζ are independent for different particles

whereas the velocity is the same.
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To establish principal qualitative features

of the process, we perform mainly 2d sim-

ulations. The setup is periodic in x and

the velocity in majority of runs was

vx = z


ξ1 cos

2πx

L
+ ξ2 sin

2πx

L



L

π
,

vz = z2

ξ1 sin

2πx

L
− ξ2 cos

2πx

L


 ,

where ξ1 and ξ2 are independent random

functions of time. MOVIE
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FIG. 1: Log-log plot of the moments of θδ, 〈θnδ 〉, multiplied by z3, for δ = 0.03125 and n = 1÷6. The graph reflects simulations
where diffusion occurs everywhere, and is switched off at z = 3 or z = 12.



 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

-5 -4 -3 -2 -1  0  1  2  3  4

n = 1

n = 6

ln(z)

ln
(〈θ

n δ
〉z

3 )

FIG. 1: Log-log plot of the moments of θδ, 〈θnδ 〉, multiplied by z3, for δ = 0.03125 and n = 1÷ 6 in the case where diffusion is
substituted by a constant velocity carrying the particles from the wall.
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FIG. 1: Moments of Θδ in log-log coordinates, n = 1÷ 6. In the region z > rbl the results collapse onto single curves for three
times τ = 0.001, 0.002, 0.004 and four different values of the diffusion coefficient.
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FIG. 1: Moments of Θδ in log-log coordinates, n = 1 ÷ 6. The results are obtained for two cases where the diffusion occurs
everywhere and where it is switched off at z > 3, and also for two different velocity fields: with two and four harmonics.
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FIG. 1: Exponents of the moments 〈Θn
δ 〉, for n = 1÷ 6 and space dimensions d = 2÷ 5. For comparison the theoretical curve

ζn = 2n− 1/2 +
√

2n+ 1/4 is plotted (solid line).
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FIG. 1: The difference of the scaling exponents of moments for the integral passive scalar and for the passive scalar, ζn − ηn,
computed at δ = 0.03125 in 2d. For comparison, the theoretical prediction n− 1 is drawn.
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FIG. 1: Histograms of the passive scalar flux at different separations from the wall. The root mean square fluctuations are
much larger than the average value and the histograms are practically symmetric. At z = 0 the probability distribution is
Gaussian whereas at z > rbl it has exponential tails.



A comparison with numerics reveal devi-

ations of the scaling exponents from the

analytical predictions. Probably, the de-

viations are related to an existence of a

long correlation along the wall that can

be produced by the multi-fold structures.

That should lead to increasing moments

in comparison with the short correlated



case. The conclusion is confirmed by nu-

merics giving values of the scaling ex-

ponents for the moments of Θ that are

smaller than the theoretical values in 2d.

The deviations diminish as d grows. Be-

sides, the scaling of the short correlation

length is in a good agreement with the

theory.


