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Catastrophic self-focusing of laser beam
or collapse In Bose-Eistein condensate

Nonlinear Schrodinger eg

0Y(r)
ey (r) +

uation:

Y(r)y(r) =0

Catastrophic collapse (self-focusing):

(r’) — 0,

max 1| — oo



Temporal and spatial dependence of solutions
near collapse: strong collapse vs. weak collapse

Strong collapse: Traps inco collapsing region a finite number
of particles. Collapsing self-similar
solution often has a form of rescaled
ground-state soliton. Critical number of
particles N, is determined by the ground
state soliton. For N<N, collpse is impossible

Weak collapse: Traps inco collapsing region a vanishing
number of particles (close to a collapse time
lesser and lesser particles are trapped into
collapse). Critical number of particles
IS not defined (without trap).



The time-dependent Gross-Pitaevskil equation:
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V(r) - long range interaction potential

g=4mh*a/m,
a - S-wave scattering length



Particular cases of V(r)

Dipole-dipole interaction potential:

o [di(r)-dy(r")]=3[d(r)-u] [dy(r) - u]
V(r_r )— -
r—r'|?

u=(r—r’)/jr—r’|,

L el
If  d(r) = const = V(r) = ! ?;;OS é
Gravity-like potential®: v/ (y) = —Z
.

1O'DeII, Giovanazzi, Kurizki, and Akulin, Phys. Rev. Lett. 84, 5687 (2000).



Consider a general potential of the following form

r = |r|
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f(n)| < oo - arbitrary function of angle



Energy functional: 30U _ OE
g = 5o

FEF=FEx+ Ep+ Enp + ER,

Where ¢ = 0, and

h? 2 13
Fr = —‘qul d’r,
] 2m
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Bp = [ gmud(ad +a3+ %D,
Enp = g /\xp|4d3r,
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Er = 5 / T () ]V (r — /)| (x))|*d’rd°r’.



The mean-square radius of the wave function:
(rg) = fr2 \IJ|2d3r/N,

N = [|¥|*d°r - the total number of atoms in
condensate

First time derivative of the mean-square radius:

h
O (r?) = m]Qi&:j(lﬂamlel* — U9, )d’r



Second time derivative of the mean-square radius:

af<’f’2> SEx —8Ep + 12E N7,

ZQmN[

—2/ W (x|?| W (2 |* (200, + 250, )V (r — r")dSr} .

For Ep =0, V(r) =0, we recover the virial
theorem for NLS with local interaction [Vlasov,
Petrishchev, Talanov (1971); Zakharov (1972)]:

1
07 (r?) = m[12E — 4Fk]



Property of interaction potential v () = 7% -

(:CJ@% + QC;@SU;)V(I' — I‘!) — —bV(I‘ — r’)

—

he virial theorem iIs reduced to:

07 (r?) = 4bE + (8 — 4b)Eg — (4 + 2b)mwiN (r?)

QmN[
—(4 +2b)mwi N (v — 1){x3) + (12 — 4b)EnT,

Eng = % f |t Ex and (22) are unknowns



Collapse of BEC.:

(r*) — 0, mazx || — oo

1
9 (r%) = s [43915 + (8 — 4b)Ex — (4 + 2b)mwi N (r2)

—(4 +2b)mwi N (v — 1){x3) + (12 — 4b)EnT,



The trap can be ignored near collapse: wg = 0

he virial theorem Is reduced to

1
O2(r?) = — |4DE + (8 — 4b) By + (12 — 4b)ENL}

2mN

b >

3| Is similar to finite range potential;

requires cutoff at small distance

2 <

b < 3 collapse is possible even for g=0

b <

2 collapse iIs impossible for g=0

P.M. Lushnikov, arxiv.org/1002.1469 (2010).



Scaling arguments (g=0, no trap)

Scaling transformation ¥ (r) — a=3/2¥(r/a)

E(a) — CL_QEK + a,_bER
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2 < b <3

Assume for simplicity that contact interaction =0 (i. e. g=0)

20F

mN

O; (r*) = LN [4513 + (8 — 4b)EK] <

2m

= (%) < 25+ 0 i—ot + ()]0

If E<0 = [(rH) —0, maxl|y] — oo

Sufficient condition for the collapse of BEC



We can do much better by the Kinetic Energy estimate:

V=Re'? R=|V|

2
Eg=j—mf [(VR)*+(V$)°R*]d°r

Integrating by part and applying Cauchy-Schwartz

Inequality:
2

mN
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Particular case: dipolar Bose-Einstein condensate

-

d(r) = const

a — stable condensate
b — collapse of condensate



Experimental observation of the dipolar Bose-Einstein
condensate collapse

0.2 ms 0.3 ms 04 ms 0.5 ms

1. Lahae et al. Phys. Rev. Lett. 101, 080401 (2008).



b < 2 collapse is impossible for g=0

We use the inequality | £ ,lzdSr <4 [|V¥(r)]*d’r

and generilize it using HOlder’ inequality

' ‘lll 2 b |LI}( )’ 3
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But V(r)= m = —min|f(n)]
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Fp = 5 f ]\II(r)IQV(r — r’)]@(r')]gd‘grd‘gr' > f 2N (%EK>

= Energy is bounded from below (assuming g=0) by:

2
E> Ep — fn 207 ' N?272 (—EK> = P(Fx)

h?
E=FEx+ Ep+ EnL + ER, Eyx = /%\V‘I’ngra
1
Bp = [ gmud(ad +a3+ %D,
Eni = g /\xp|4d3r,

1 o
Frp = 5 / U () ]V (r — /)| () |*d’rd°r’.



P(EK) isbounded from below:

Curve 1. P(E)
2 —b

= Bz =2 TN

E Is bounded from below for any £

Collapse iIs impossible for

b < 2




Soliton solution

WU(r,t) = A(r)e imt/l

h* 1
= [—u— Q_mVZ + §mw§(aﬁ + a5 + y223)

+ / &r' V(r — r’)A(r’)2] A(r) =0,

b 2
Ers=—pNsg= + Eps, Ers = pNog—,
h— 2
E, = —uN,—— + 2Ep.,
Ty TR

where subsript “s” means that all integrals are taken for
soliton solution.
For ., =0 allintegrals dependson N, only.



Soliton solution is the stationary point of E for
the fixed number of particles §(F — uN) = 0

As well as the stationary point of the following functional

f(\I/) = Nl_% (%_?EK) f |r— r’|b

Assume that f(n) = Const < 0 thenone can look
At the radially-symmetric solution and obtain for
the ground-state soliton solution that

F(V) > min F(V) = F(Uy round)

which gives stricter than previous inequality:
E > min kb = Es,ground




|.e. the ground state soliton realizes a global minimum
of E for fixed N.

= | the ground-state soliton is nonlinearly stable

Example: b=1 gravity-like potential. Ground state found
In Ref!

1Cartarius, Fabci¢, Main, and Wunner, Phys. Rev. A, 78, 013615
(2008).



If f(n)# Const but takes negative values for
nonzero range of values of n then ground state soliton

still exist and stable.

If f(n) > 0 all values of n then soliton solution

does not exists (we assume g=0 and ,, = ( ) and
Any initial conditions decays into linear waves.

Self-trapping requires , - In that case.



Temporal and spatial dependence of solutions
near collapse: strong collapse vs. weak collapse

Strong collapse: Traps inco collapsing region a finite number
of particles. Collapsing self-similar
solution often has a form of rescaled
ground-state soliton. Critical number of
particles N, is determined by the ground
state soliton. For N<N, collpse is impossible

Weak collapse: Traps inco collapsing region a vanishing
number of particles (close to a collapse time
lesser and lesser particles are trapped into
collapse). Critical number of particles
IS not defined (without trap).



Nonlinear Schrodinger equation:

() () —
o, (1) + 1) () = 0

D=2: Strong collapse

D=3: Both Weak and Strong collapses
are possible but Strong collapse Is unstable



0P(r)
ot

+ V23 (r) + [ (1) (r) = 0
Scaling invariance of 2D Nonlinear Schrodinger

Equation (NLS):

If W(r,t) -solution of NLS

= gl LQ) - also solution of
LoL the same NLS with L = Const



Critical case Is at the border between collapsing and
noncollapsing cases

For v =7 we have fixed dimension D=3
but instead we Ean change b.

b=2: critical case which has the scaling invariance.
if W(r.t) -solution of GPE with V()=

72

= gX Ly -also solution of

)
L L? the same GPE with L = Const



~  For b=2 collapse is critical with self-similar solution

determined by the ground-state soliton

C

E.g., for radially-symmetrical case V(r) = ——

7"2

The self-similar collapsing solution of the GPE

() ()
— ) =

W(r) +

has the following form: U(r, 1) = U(r, 1),

1 .
\IJ(T', t) ~ _V(p)EZZT-l-ZLLtpz/le L N O7

L
T /t dt’
p_ LJ T = 0 LQ(t,)7

2 . ’V(pl)lz / L
VVi(p) = Vip) + yy= p,lzdp Vip)=0.




NLS:

D<?2 — global existence of solution
D=2 — critical collapse
D>2 — supercritical collapse

GPE with V(r) = f(n)

rb

n<2 — global existence of solution
n=2 — critical collapse
n>2 — supercritical collapse




Scaling arguments (g=0, no trap)

Scaling transformation ¥ (r) — a=3/2¥(r/a)

E(a) — CL_QEK + a,_bER
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Nonlinear Schrodinger equation:

() () —
o, (1) + 1) () = 0

D=2: Strong collapse

D=3: Both Weak and Strong collapses
are possible but Strong collapse Is unstable



0P(r)
ot

+ V23 (r) + [ (1) (r) = 0
Scaling invariance of 2D Nonlinear Schrodinger

Equation (NLS):

If W(r,t) -solution of NLS

= gl LQ) - also solution of
LoL the same NLS with L = Const



Critical collapse: Self-similar
solution near singularity

U(x,t)=V(rt), r= (5(32 4 y2)1/2
1 L
ir) = EV(p)e”“LL”Q/ S JNY)
_r _ftﬁ’

p o L: T = . Lz(t,>a
Soliton solution of NLS: AV -V £ V]2V =0
lawd to — 1 1/2
LogLog law-: 7 — (9 — |

o ( 7Thlhl[l/(to — t)})

1G. Fraiman (1985), M. Landman, G. Papanicolaou, C. Sulem, and P. Sulem (1987).



NLS D=3: Supecritical case

Self-similar solution for weak collapsel

1 r
= o — iz X ((to_t>1/2> . a~0545. ..

x(@-ilfm for £ — o

1V.E. Zakharov and E A. Kuznetsov, JETP, 64, 773 (1986).



Self-similar solution for strong collapse?!
V= Re'

NLS

OR*+V - (R*V¢) =0
Dp+(1/2)(Vp)* = R* + (1/2)R'V*R

Hydrodynamic approximation

O, R? +V - (R?Vo) = 0
00+ (1/2)(Vo)* = R*
- hydrodynamics equation for

gas with the negative pressure and
adiabatic constant = -2



Look for solutions in the following self-similar form

o 1 N _
’w’ _CL(t)B (5)* £ CL(t)

n(€) = M1 — &%), A = const

t /
_ Dlea ‘
= /0 O

a(t) = (25/3XH)Y5(tg — t)*°  for  t—0

But that solution Is unstable!

1V.E. Zakharov and E A. Kuznetsov, JETP, 64, 773 (1986).



Basic differential inequality for b=3 and wo#0 :

1
)= 2N

2 ( N +m2N(é'r(r2))2)
2m <r2> ﬁ2<r2)

— 10mw;NF(y){r?)

k]

where F(y)=1 for y=1 and F(y)=y* for y<I.



Motion of Newtonian “particle” with coordinate
B In potential U(B) with additional nonpotential
force —r%(¢):

0.8 | 12

B/B,
Energy of particle Is time-dependent:

E(t)=B?2+ U(B)



B/B

Curve 1 E"‘{“ﬁwDN[F( ')/)5]”2/2Echf'fﬁca!

Curve 2 E}Ecrfrfﬁ*af

Barrier: By =3(E—[E*—E.ical"™/[SmagF(y)]



Change of variable (»?)=B*5/N gives:

J*B< > 3EBY - AT ONT S 2F(v)B
2m 8m g5 200 (7)

Equivalent form:

aUB
Brr ()_f()

25 h?225N? 25
[J=— _EBﬁfS_i_ BZ;’S_F_ 2F BZ
Adm 32m2 8 Wy (7)




Comparison with variational approach:

B _ 2, 202 202
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Curve 1 — variational estimate Ey=t"w0\Y d*m?"

Curve 2 — sufficient collapse criteriont

1p M. Lushnikov, Phys. Rev. A. 66, 051601(R) (2002).



Experimental observation of the dipolar Bose-Einstein
condensate collapse

0.2 ms 0.3 ms 04 ms 0.5 ms

1. Lahae et al. Phys. Rev. Lett. 101, 080401 (2008).



Strong collapse for dipole-dipole interaction

.0Y(r) (1 —3cos*O)(r)]* _
=t V2i(r) — / PE dr'p(r) = 0

Look for solutions in the following self-similar form-

W= — L e, e=-L (=
P G

n(é) = M1 — & — ), A = const

&= fe()&” + fe(t)C + do(t)

Unstable?

Ticknor, Parker, Melatos, Cornish, O’Dell, Martin, Phys. Rev. A, 78, 013615
(2008).



Long-time condensate existence for b=3

. : 3 OV )
Energy functional:  in2% = 2&

FEF=FEx+FEp+ ENnL + EDD,

2
Where Ex :/h_‘vml2d3rj
2m

1
Bp = [ gmud(ad +a3+ %D,
Eni = %/\wcﬁr,

1
Epp = 5 / U (r) [V (r — /)| ¥ () |?d’rd’r’.



Long-time condensate existence for b=3

FEF=FEx+FEp+ ENnL + EDD,

Dipole-dipole interaction energy:

Epp=( 1/2)}'\}31{\2 desk/(zw)s
Vi=—(47/3)d*(1-3 cos’a)

a - angle between k and d.
Vi=—(4/3)d?

EDD;—(ZTT/:‘;)LFY, Yzf\qfﬁf’r



Embedding theorem:

Y<(4/3°*N,) N2 X2, X=[|V¥|?d*r,
Y=[|¥|*dr

No=18.94 - number of particles for the ground state
solution?! of nonlinear Schrodinger

equation:

do=AR(Ar)e™’,  —\2R +V2R+R3=0, N,= [R2d’r

IE. A. Kuznetsov, J. J. Rasmussen , K. Rypdal, and S. K. Turitsyn, Physica D 87,273  (1995).



Inequality for energy functional:

E=FEx+FEp+ ENnL+EDpD

_ h? i 9mw2F A2 2(47d*—3g)
~2m sx (V) 352y, =E,(X).

X=[|VW¥|?d°r

4md*’<3g - global existence as X is finite?

'"M.I. Weinstein, Commun. Math. Phys. 87, 567 (1983).



Global existence for 4nd*>>3g

}ﬁz Om w? ) 2(47d*—3g)
E.--%X‘F %% F(')/)N — SSQNU

1.5

1.0

E/E,

Curve 1 N>N., N, =233452N,/[5544md?> —38)F(y)""m"w'”]

Curve 2. N<N.- global existence for X left from barrier



Generation of gravity-like potential?

Dipole-dipole interaction induced by a Iser beam of intesity |,
Wave vector g and polarization é:

1

4 c 80

U(r) = (= )a? ()81, (g. r)cos(a - 1

Vii= —[(5I-j — 38;F;) (cosqr + grsingr)
r3
— (05 — rlrj)q r? cosqr],

I, :i’z‘/”

a(q) - isotropic dynamic polarizability at frequency cqg

1O'DeII, Giovanazzi, Kurizki, and Akulin, Phys. Rev. Lett. 84, 5687 (2000).



For 3 orthogonally polarized laser beams pointing In
X,¥.,2  directions we expand in small gr

7
3 + (sinf cosg)*

+ (sinf sing)* + (0059)4]



