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Catastrophic self-focusing of laser beam 
or collapse in Bose-Eistein condensate

Nonlinear Schrödinger equation:

Catastrophic collapse (self-focusing):



Temporal and spatial dependence of solutions 
near collapse: strong collapse vs. weak collapse

Strong collapse: Traps inco collapsing region a finite number
of particles. Collapsing self-similar
solution often has a form of rescaled 
ground-state soliton. Critical number of 
particles Nc is determined by the ground 
state soliton. For N<Nc collpse is impossible

Weak collapse: Traps inco collapsing region a vanishing 
number of particles (close to a collapse time
lesser and lesser particles are trapped into
collapse). Critical number of particles 
is not defined (without trap). 



The time-dependent Gross-Pitaevskii equation:

- s-wave scattering length

- long range interaction potential



Dipole-dipole interaction potential:

Particular cases of  

Gravity-like potential1:

If

1O'Dell, Giovanazzi, Kurizki, and Akulin, Phys. Rev. Lett. 84, 5687 (2000).



Consider a general potential of the following form

- arbitrary function of angle



Energy functional:

Where                and        



The mean-square radius of the wave function:

- the total number of atoms in           
condensate

First time derivative of the mean-square radius:



Second time derivative of the mean-square radius:

For                                 we recover the virial 
theorem for NLS with local interaction [Vlasov, 
Petrishchev, Talanov (1971); Zakharov (1972)]:



Property of interaction potential :

The virial theorem is reduced to:

,            and         are unknowns



Collapse of BEC:

from



The trap can be ignored near collapse:

The virial theorem is reduced to

collapse is possible even for g=0

is similar to finite range potential; 
requires cutoff at small distance

collapse is impossible for g=0

P.M. Lushnikov, arxiv.org/1002.1469 (2010).



Scaling arguments (g=0, no trap)

Scaling transformation

Curve 1: b>2
Curve 2: b=2 and N<Nc
Curve 3: b=2 and N> Nc
Curve 4: b<2



Assume for simplicity that contact interaction =0 (i. e. g=0)

If

Sufficient condition for the collapse of BEC



We can do much better by the Kinetic Energy estimate:

Integrating by part and applying Cauchy-Schwartz 
inequality:



Particular case: dipolar Bose-Einstein condensate

a – stable condensate
b – collapse of condensate



Experimental observation of the dipolar  Bose-Einstein
condensate collapse

1T. Lahae et al. Phys. Rev. Lett. 101, 080401 (2008).



collapse is impossible for g=0

We use the inequality 

and generilize it using Hölder’ inequality 

But



Energy is bounded from below (assuming g=0) by:



is bounded from below:

Curve 1:

E is bounded from below for any 

Collapse is impossible for                  and g=0



Soliton solution

where subsript “s” means that all integrals are taken for
soliton solution.
For                   all integrals depends on           only.



Soliton solution is the stationary point of E for
the fixed number of particles

As well as the stationary point of the following functional

Assume that                                            then one can look
At the radially-symmetric solution and obtain for 
the ground-state soliton solution that

which gives stricter than previous inequality:



I.e. the ground state soliton realizes a global minimum 
of  E for fixed N.

the ground-state soliton is nonlinearly stable

1Cartarius, Fabčič, Main, and Wunner, Phys. Rev. A, 78, 013615 
(2008).

Example: b=1 gravity-like potential. Ground state found 
in Ref1



If                           but takes negative values for 
nonzero range of values of n then ground state soliton
still exist and stable.

If              for all values of n then soliton solution 
does not exists (we assume g=0 and                 ) and
Any initial conditions decays into linear waves.
Self-trapping requires                in that case.



Temporal and spatial dependence of solutions 
near collapse: strong collapse vs. weak collapse

Strong collapse: Traps inco collapsing region a finite number
of particles. Collapsing self-similar
solution often has a form of rescaled 
ground-state soliton. Critical number of 
particles Nc is determined by the ground 
state soliton. For N<Nc collpse is impossible

Weak collapse: Traps inco collapsing region a vanishing 
number of particles (close to a collapse time
lesser and lesser particles are trapped into
collapse). Critical number of particles 
is not defined (without trap). 



Nonlinear Schrödinger equation:

D=2: Strong collapseD=2: Strong collapseD=2: Strong collapse 

D=3: Both Weak and Strong collapses
are possible but Strong collapse is unstable 



Scaling invariance of 2D Nonlinear Schrödinger 
Equation (NLS):

If                - solution of NLS

- also solution of 
the same NLS with 

D=2



Critical case is at the border between collapsing and 
noncollapsing cases  

For                           we have fixed dimension D=3
but instead we can change b.

b=2: critical case which has the scaling invariance.

If                - solution of GPE with

- also solution of 
the same GPE with 



For b=2 collapse is critical with self-similar solution
determined by the ground-state soliton

E.g., for radially-symmetrical case
The self-similar collapsing solution of the GPE 

has the following form:



D<2 – global existence of solution
D=2 – critical collapse
D>2 – supercritical collapse

NLS:

GPE with

b<2 – global existence of solution
b=2 – critical collapse
b>2 – supercritical collapse



Scaling arguments (g=0, no trap)

Scaling transformation

Curve 1: b>2
Curve 2: b=2 and N<Nc
Curve 3: b=2 and N> Nc
Curve 4: b<2



Nonlinear Schrödinger equation:

D=2: Strong collapseD=2: Strong collapseD=2: Strong collapse 

D=3: Both Weak and Strong collapses
are possible but Strong collapse is unstable 



Scaling invariance of 2D Nonlinear Schrödinger 
Equation (NLS):

If                - solution of NLS

- also solution of 
the same NLS with 

D=2



Critical collapse: Self-similar 
solution near singularity

1G. Fraiman (1985), M. Landman, G. Papanicolaou, C. Sulem, and P. Sulem (1987).

Soliton solution of NLS:

LogLog law1:



D=3: Supecritical caseNLS

Self-similar solution for weak collapse1

1V.E. Zakharov and  E A. Kuznetsov, JETP, 64, 773  (1986).



NLS

Hydrodynamic approximation

Self-similar solution for strong collapse1

- hydrodynamics equation for
gas with the negative pressure and
adiabatic constant = -2



Look for solutions in the following self-similar form

1V.E. Zakharov and  E A. Kuznetsov, JETP, 64, 773  (1986).

But that solution is unstable!



Basic differential inequality for b=3 and             :

where



Motion of Newtonian “particle” with coordinate 
B in potential           with additional nonpotential 
force             :

Energy of particle is time-dependent:



Curve 1:

Curve 2:

Barrier:



Change of variable                    gives:

Equivalent form:



Comparison with variational approach:

Curve 1 – variational estimate
Curve 2 – sufficient collapse criterion1

1P.M. Lushnikov, Phys. Rev. A. 66, 051601(R) (2002).



Experimental observation of the dipolar  Bose-Einstein
condensate collapse

1T. Lahae et al. Phys. Rev. Lett. 101, 080401 (2008).



Strong collapse for dipole-dipole interaction

Look for solutions in the following self-similar form1

1Ticknor, Parker, Melatos, Cornish, O’Dell, Martin, Phys. Rev. A, 78, 013615 
(2008).

Unstable?



where

Long-time condensate existence for b=3

Energy functional:



Long-time condensate existence for b=3

Dipole-dipole interaction energy:

- angle between  k and d.



Embedding theorem:

- number of particles for the ground state 
solution1 of nonlinear Schrödinger 
equation:

1E. A. Kuznetsov, J. J. Rasmussen , K. Rypdal, and S. K. Turitsyn, Physica D 87, 273       (1995).



Inequality for energy functional:

- global existence as X is finite1

1P.M. Lushnikov, Phys. Rev. A, 66, 051601(R) (2002).



Global existence for 

Curve 1:

Curve 2: - global existence for X left from barrier



Generation of gravity-like potential1

1O'Dell, Giovanazzi, Kurizki, and Akulin, Phys. Rev. Lett. 84, 5687 (2000).

Dipole-dipole interaction induced by a lser beam of intesity I,
Wave vector q and polarization    :

- isotropic dynamic polarizability at frequency



For 3 orthogonally polarized laser beams pointing in
directions we expand in small


