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Difference equations on 72 can be seen as a discrete
analogue of partial differential equations with two inde-
pendent variables.

Let us denote by u = u(n,m) a complex-valued function
u : Z2 — C where n and m are “independent variables”
and u will play the rOle of a “dependent” variable in a
difference equation.

Instead of partial derivatives we have two commuting
shift maps S and 7T defined as

S:urrugg=u(nt+l,m), T urrug1 =u(n,m+1)

For uniformity of notations, we denote u as ug .



In the theory of difference equations we shall treat sym-
bols up ¢ as variables.

We denote U = {upq| (p,q) € Z°}.

STV = fij = FQupytigr+jo - -+ Upytisg+s)-

A quadrilateral difference equation can be defined as

Q(up,0,u1,0,u0,1,u1,1) =0,

where Q(u0,07u1,07u0,17u1,1) is an irreducible polyno-
mial of the “dependent variable” u = ug g and its shifts.
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We shall assume that @ is an irreducible affine-linear
polynomial which depends non-trivially on all variables:

2
0Q _, 0Q _

0, i,j € {0,1}.
Ouij 0%uij Jeiol

Let C[U] be the ring of polynomials.
S,T € AutC[U] and thus C[U] is a difference ring.

T he difference ideal

Jo = {Qpual| (0, @) € Z°})

is prime and thus the quotient ring (C[U]/JQ is an inte-
gral domain.

Solutions of the difference equation are points of the
affine variety V(Jg).



Rational functions of variables up, on V(Jg) form a
field

Fo ={lal/[b]|a,b € C[U], b¢g Jg},

where [a] denotes the class of equivalent polynomials
(two polynomials f,g € C[U] are equivalent, denoted by

f=g iff—geJg).

For a,b,c,d € C[U], b,d € Jg, rational functions a/b and
c/d represent the same element of Fq if ad — bc € Jg.

The fields of rational functions of variables

Us ={upol|ln €z}, Ui={ugn|necz}, Uyg=UsUUs.

are denoted respectively as

Fs = C(Us), Fi = C(Uy), Fo = C(Up).



In the affine-linear case we can uniquely resolve equa-
tion Q = 0 with respect to each variable

uo,0 = F'(u1,0,u0,1,u1,1), u1,0 = G(ug0,u0,1,u1,1),
ug,1 = H(ug,0,u1,0,u1,1), u1,1 = M(ug,0,u1,0,u0,1)-
We can recursively and uniquely express any variable
up,q IN terms of the variables Ug = Us U Uy.

Definition 1. For elements of U the elimination map
E .U w— C(Up) is defined recursively:

Vp € Z, g(uO,p) — UQ,ps g(up,O) — Up,0

if p>0,q9>0, g(up,q) — M(S(up—l,q—l)ag(up,q—l)ag(up—l,q)) 5
if p<0,q>0, E(up,q) = H(E(up g—1), E(upt1,9-1),E(Upt1.4))
it p> 0,9 <0, g(up,q) — G(g(up—l,q)ag(up—l,q+1)ag(up,q—|—1)> :

if p<0,q9<0, E(up,q) = F(E(upt1,4), E(up g41), E(Upt1 g4+1)) -



For polynomials f(upi,qq;---,Up..q.) € ClU] the elimina-
tion map £ : C[U] — C(Up) is defined as

E 1 f(upygry- - uppa) = F(E(Upyg1), .-, E(upyq)) € C(Up).

For rational functions a/b, a,b € C[U], b &€ Jg the elim-
ination map &€ is defined as

E:a/b— E(a)/E(D).

Variables Ug we shall call the dynamical variables.

E(up,q) is a rational function of |p| + |¢| + 1 dynamical
variables (pg #= 0)

E(up,q) € C{un,0,u0,m |0 < [n—p| < [pl, 0 < [m—q| < |ql}).



The elimination map & : C[U] — C(Up) is a difference
ring homomorphism

Keré’:JQ, ImSNC[U]/JQ.

The field C(Up) is a difference field with automor-
phisms £o0S and £o0T. The map & : Fg +— C(Up) is a
difference field isomorphism.

Map £ is a useful tool to establish whether two rational
functions f, g of variables U are equivalent (i.e. repre-
sent the same element of F): f =g« E(f) = &E(g).



Symmetries and conservation laws
of difference equations

Definition 2. Let () = 0 be a difference equation. Then
K € ]—"Q is called a symmetry (a generator of an in-
finitesimal symmetry) of the difference equation if

Dg(K) = 0.
Here D¢ is the Frechet derivative of Q defined as
. o
DQ — ZQuijSZT] ) Quij — Q .
ij T Oug

What one has to check is that £(Dg(K)) = 0.



If K is a symmetry and v = u(n,m) is a solution of a
difference equation Q = 0O, then the infinitesimal trans-
formation of solution wu:

u=u-+eK

satisfies equation

L a0
Q(tug,0,u1,0,U0,1,u1,1) = O(e%).

If the difference equation ¢ = 0 admits symmetries,
then they form a Lie algebra. With a symmetry K €&
]—"Q we associate an evolutionary derivation ( SXyg =
XiS, TXg = XgT) of Fg (or a vector field on Fg):

0
Qup,q

Xk= ), Kpg : Kp,q = SPTI(K)

(p,q)€Z?



For any a € Jg we have Xg(a) € Jg and thus the
evolutionary derivation X is defined correctly on 7.

XpXg— XgXp = Xy,

where H = [F, (] is also a symmetry, with [F, G] denot-
ing the Lie bracket

[F,G] = Xp(G) — Xg(F) = Da(F) — Dp(G) € Fq.

The Lie algebra of symmetries of the difference equa-
tion Q = 0 will be denoted as 2.

Existence of an infinite dimensional Lie algebra QlQ IS a
characteristic property of integrable equations and can
be taken as a definition of integrability.



Symmetry K can be represented by £(K) € Fgq.

It is known, that for a quadrilateral equation a symme-
try is a sum of two functions

K = KS(’UJNLO, c o 7uN2,O) —|— Kt(uO,M17 c o 7uO,M2) .

For the ABS equations any “five point symmetry” K =
K(UO,O,u_17o,uO,_1,’U,170,uO’1) is a sum of symmetries

K = Ks(u_1,0,u0,0,u1,0) + K¢(uo,—1,u0,0,u0,1)-

For Ks € Fs . ord KS(U’Nl,Oa e 7uN2,O) = (Nl,NQ).
For Ky € ¢ : ord Kt(uO,M17 - 7UO,M2) = (Mq, M>).



Definition 3. (1) A pair (p,0) € Fq is called a conser-
vation law for the difference equation Q = 0, if

(T -1)(p) = (S —-1)(0).

Functions p and o will be referred to as the density
and the flux of the conservation law and 1 denotes the
identity map.

(2) A conservation law is called trivial, if functions
p and o are components of a (difference) gradient of
some element H € Fq, I.e.

p=(S—-1)(H), o= (T —-1)(H).

(3) If p1 — p2 €IM(S — 1), then p1 = po.



Typically conserved densities belong to Fg or F;.

Euler's operator gives a criteria to determine whether
two elements of Fg are equivalent or not.

Definition 4. Let f € Fs has order (N1, N»), then the
variational derivative és of f is defined as

N>
(=Y 8—k< o )

]{:Nl 8ukao

For p,o€ Fs, p=o0 & ds(p) = ds(o).
If p is trivial then és(p) = 0.

The order of a density p € Fs is defined as ords, (p) =
N> — N1, where (N1, N2) = ord(ds(p)).



Recursion operators for difference equations
Definition 5. (1) Elements of F[S] are called s-difference
operators.

(2) Elements of Fp(S) are called s-pseudo-difference
operators.

Similarly one can define t-difference and t-pseudo-difference
operators.

The action of a difference operator A ¢ Fg[S] on ele-
ments of Fq is naturally defined and Dom(A) = Fq.

The domain of a pseudo-difference operator B € F(S)
is defined as Dom(B) = {a € Fg| B(a) € Fg}.

For instance, if B = FG~! where F,G € Fg[S], then
Dom(B) =Imd.



A recursion operator of a difference equation () =0
IS a pseudo-difference operator R such that

R Dom(R) NAg — A,

where QLQ IS the linear space of symmetries of this dif-
ference equation.

In other words, if the action of SR on a symmetry K & Fo
is defined, i.e. R(K) € Fg, then R(K) is a symmetry
of the same difference equation.



Theorem 1. Let Q(uo,o,ul’o,uql,ul,l) = 0 be a differ-
ence equation.

(i) If there exist two s—pseudo-differential operators R
and ‘3 such that

DgoR =P o Dy,
then R is a recursion operator of the difference equa-
tion.
(ii) Relation (1) is valid if and only if
T(R) —R=[PoR,d 1],

where ® = (Quy 1S+ Qug 1) T 0(Quy oS+ Quog), and the
operator ‘B3 satisfies

B = (Qul,os T Quo,o) ofR o (Qul,oS + Quo,o)_l-



Theorem 2. Let Q(uo,o,ul’o,uql,ul,l) = 0 be a differ-
ence equation.

(i) If there exist two t—pseudo-differential operators R
and B such that

DQOQ\QZ‘iﬁoDQ, (1)
then R is a recursion operator of the difference equa-
tion.

(ii) Relation (1) is valid if and only if
S(R) —R=[WoR v

where W = (Quy 1T + Qui )" © (Quos T + Qugp), and
the operator *Y} can be written as

si} — (Quo,lT + Quo’o) O 9\% O (Q’UJO,lT + QuQO)_l-



Corollary 1. 1. Under the conditions of Theorem 1,
the pseudo-difference operator ‘R satisfies the following
equations

T(R") — R = [d o R, d 1], n €7, (2)

2. Under the conditions of Theorem 2, the pseudo-
difference operator SR satisfies equations

S(R") — R" = [W o R"?, w1 neZ,

Proof. It that DgoR"™ =P" o Dg,n € Z. Thus, we can
apply Theorem 1 to R"™ and B"™ to produce (2). The
proof of the second part of the Corollary is similar. W



Formal difference series, difference Adler
T heorem.

Definition 6. A formal Laurent series of order N is
defined as a formal semi-infinite sum

A=anySN+ay 1SN T+ arSHagta 1S4,
where ay, € Fgo, any #0, N €LZ.

A formal Taylor series of order —N is defined as a formal
semi-infinite sum

C=c_ NS Ntci_nSt N+ e 18 T tcgter S+,
where ¢ € Fg, c_ny#0, N €LZ.

Laurent formal series form a skew-field. Sums and
products (compositions) of formal series are formal se-
ries. The product is associative, but not commutative.



For any formal series A there exists a formal series A1
such that Ao A1 = A=10 A =1. In order to find the
first n coefficients of A~—! one needs to know exactly
the first n coefficients of A.

Any pseudo-difference operator B can be uniquely rep-
resented by a Laurent formal series Bj. For example
for B = (aS 4+ b)~1 we have

B =a_ 18 '4a 8 ?+a 383+,
where the coefficients oy, € Fg can be found recursively:

a_1 = S—1 (1) , gy = ~s1 (al_nb> :

a a
Definition 7. Let A; denote the Laurent series repre-
sentations of a pseudo-differential operator A. Then
ordA; is called the Laurent order of A.




Definition 8. Let A be a formal series of order N

A=anySN+any 1SN+ +a1S+agta 1S+

The residue res(A) and logarithmic residue resin(A)
are defined as

res(A) = ag, resin(A) = In(ay) .

Theorem 3. Let A = anSN +any_1SV1... and B =
by SM + by 1SM-1... be two Laurent formal series of
order N and M respectively. Then

res[A, B] = (S — 1)(¢(A, B)),
where (A, B) € Fg

N n M n
c(A,B)= Y Y SFa_n)S Fbn) =Y Y STR(_n)S  F (an).

n=1k=1 n=1k=1



Canonical conservation laws:
integrability conditions
Theorem 4. If a difference equation poOSSesses a recur-
sion operator R, ord;(R) = N > 0, then it has infinitely
many canonical conservation laws
(T—l)pnN:(S—l)O'nN, n=O,1,2,...
with canonical conserved densities

po=resInRy, p,n = resR?, n>0,
and the corresponding canonical fluxes

N-1
oo= Y S lnag), o.y=0c(®PpoR}, &)
k=0
where aq IS the first coefficient in the Laurent expan-

sion of ®: ag = S~1 (gul’o) and o(A, B) is defined in
ul1

T heorem 3.




If a recursion operator is known, then Theorem 4 gives
us a completely algorithmic way to find explicitly a se-
quence of conservation laws, including both the densi-
ties p. and the corresponding fluxes o;. The residues
of powers a formal series are easy to compute. For
instance, if

R=riS+rg+r_ 1S t+r -8 2+r_ 383+
then

resin R =Inry, resik = rq,

resi? = S~ H(r)r_1 +r§ + 1S H(r_1),

resR> = S72(r1)S 1 (r1)r_o +

+S8 1 (ro)S T (r1)r_1 + 28 H(r)r_1ro + ST H(r)r1S(r_2) +
+rg + 2ror1S(r_2) + r1S(r_1)S(rg) + r1S(r1)S?(r_2).



Proposition 1. If a recursion operator SR is represented
by a first order formal series Ry = riS+rg+r_1S~ 1+
.-+, then

() (T —D(nr) =(S—-1)81 (mQ““),
Quy
(ii) (T —1)(ro) = (S — )8 (r1 F),
(iii) (T = 1)(r_18 1 (r) + 8 +r118(r_1)) = (S — 1)(02),
where
o = ST F) {ST o) + 0 - STA(rF)} -
~(14+8H(nes ),
and F,G denote
_ Quo1S™ M (Quy) — QuooS™ (Quyy) o _ Quoo
Qul,oS_l(Qul,l) 7 Qul,O.

F




Proposition 2. If a recursion operator R is represented
by a first order formal Laurent T series Ry = 71T +
o+ 717 1+---, then

(i) (S—1)(In7) = (T —1)T 1 (mQ’“’l’l),
Qug 1
(ii) (S —1)(fo) = (T - )T (71 F),
(iii) (S —1)(F_18 (7)) + 7§ + 71S(7_1)) = (T — 1)(62),
where

62 = STIHFELF) {STHFo) + 7o — STA(FF)} -
- A+8H(RGs (A F)),
and F,G denote
QUl,OT_l(QUO,l) - QUO,OT_l(QUI,l) O — QUO,O

F = ,
QUO,lT_l(QU1,1> Qug 1




The Viallet equation (Q5)

Q = ajugouiouo,1u1,1 + ax(ugou1 ouo,1 + u1,0u0,1U1,1
+up 1u1,1u0,0 + ©1,1%0,0%1,0)
+az(up ou1,0 + ug,1u1.1) + as(uy ouo,1 + uo ov1,1)
+as(uo,0uo,1 + u1,0u1,1)
+ag(ug o+ u1,0 +uo1+ui 1) +ay
=0,

where a; are free complex parameters.

e All of the ABS (Adler, Bobenko, Suris) equations
can be obtained from Qs;

e For generic coefficients it can be transformed into
Adler’'s equation (Qy);

e Q5 is invariant under uj g <> ug1 and az <> as.



Genralised symmetries K: Dg[K] =0

e [ongas-Tsoubelis-Xenitidis; Rasin-Hydon: the ABS
equations (mastersymmetries);

e A generalised symmetry of order (—1,1) for the
Viallet equation (Tongas-Tsoubelis-Xenitidis):
h 1 h_q 1
uio—u—10 2 u10—u-10 2

? Y

where h(’UJO,O,U]_’O) — Qa’uo’la’ul,l@ T 8’LLQ71Q 8’LL171Q°

K .=

e Statement: The Viallet equation possesses a sym-
metry of order (-2, 2)

(2 _ hh_q ( 1 4 1 ) |
(u1.0 —u—1,0)2 \u20—u0,0 00— U_20

2



Recursion operator of the Viallet equation

Theorem. The Viallet equation possesses a recursion
operator R =H o L.

1 1
T =-8— S_lﬁ . (symplectic operator)

h
h_1hh
H= 12 : 7S
(u1,0 —u—1,0)“(u2,0 — u0,0)
h_1hhy

_s1

(u1,0 —u—_1,0)%(up0 —up 0)?

+2KDs S -1) K@ 4 o g@ (s 1) 1kxD
(Hamiltonian operator) .



Svymplectic and Hamiltonian Operators

1
I:b—)Ql———>w=§/du/\Idu

if 2-form w is anti-symmetric and is closed, we say Z is
symplectic.

Hol o= {1, [o} =<8, H5(9) >

if the Poisson bracket defined is anti-symmetric and
satisfies the Jacobi identity, we say H is Hamiltonian.

(cf. Dorfman, 1993 & Olver 1993)



Svymplectic and Hamiltonian Operators of Qb5

Symplectic: symmetries — covariants
Hamiltonian: covariants — symmetries

Py o L1 1%k 10oh
u2 0 —U0,0 0,0 —U-20 2 h 2 h_y
= Js (In h_1—2 |n(ul,o — u_1,0)>
(1) (1)
hh_ K K

(u1,0 —u—1,0)? | (u2,0 —u0,0)?

+< 1 L >K<1>K<2>
U2 0 —UQ0  UO,0 — U—2,0




