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Clean graphene model

2.46 A
ë

  

Tight-binding approximation

two sublattices: A, B

two valleys: K, K0

linear dispersion: " = v0jpj
massless Dirac Hamiltonian:

H = v0���p ��� = f�x ; �yg
velocity: v0 � 108 cm/s

band width: � � 1 eV
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Ballistic setup

x

y

0 L

0

W

rectangular sample with dimensions L�W
large aspect ratio: W � L

=) boundary conditions (edge modes) irrelevant

zero energy (Dirac point)

ideal contacts

perfect metallic leads (highly doped regions of graphene)
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Ballistic transport experiment
Danneau et al. ’07

Setup

Rectangular sample

Temperature 4:2� 30 K

Large aspect ratio W =L = 24

Ballistic limit L � 200 nm

At the Dirac point

Conductance

G(� = 0) � 4e2

�h

W

L

Fano factor F (� = 0) � 1=3
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Electron transport in the clean sample

1

r

t

Transport properties

vertical momentum p is conserved

transmission probability T = jt j2 = 1

cosh2 pL

conductance G =
4e2W

h

Z
dp

2�
T =

4e2

�h

W

L

Fano factor F = 1�
R
dpT 2R
dpT

=
1

3

Distribution of transmission probabilities

P(T ) =
W

�

���� dpdT
���� = W

2�L

1

T
p
1�T
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Green functions formalism

Green functions: GR;A = (�� i0�H )�1

Velocity operator: v = @H=@p = v0���

Transmission moments (generalized Kubo formula)

TrT n = Tr[vxG
R(0;L)vxG

A(L; 0)]n

R

A

v

v

Conductance

v

v

A
A

R

R

v

v

Noise
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Generating function

Matrix Green function [Nazarov ’94]

�G =

�
�+ i0�H ��(x )vx sin �

2

��(x � L)vx sin �

2 �� i0�H
��1

Generating function (free energy)

F(�) = Tr log �G�1(�)

Conductance: G = �2e2

h

@2F
@�2

����
�=0

Fano factor: F =
1

3
� 2

3

@4F=@�4
@2F=@�2

����
�=0

Clean graphene

F0(�) = �W �2

�L
, G =

4e2

�h

W

L
, F =

1

3
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Single strong impurity: numerics
Bardarson, Titov, Brouwer ’09
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General formalism

Generating function

F(�) = Tr log( �G�1
0 �V ) = F0 +Tr log(1� �G0V )

Small impurity ) G0 at coincident points ) diverge!

How to resolve? Introduce T-matrix!

T = V (1� gV )�1 with g(r) = � i���r
2�r2

 Green function of infinite graphene

�F = Tr log[1� gV � ( �G0 � g)V ] = Tr log[1� ( �G0 � g)T ] +(((((((
Tr log[1� gV ]

With regularized Green function �Greg(r) = lim
r0!r

h
�G0(r; r0)� g(r� r0)

i
�F = log det[1� �Greg(r)T ]  just 2� 2 determinant!
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Scattering of Dirac fermions

k

k’

φ

Scattering state

 = e ikx
�
1

1

�
+
f (�)p�ir e

ikr

�
1

e i�

�

f (�) = �
r

k

2�
hk0jT jki

s-wave scattering

T = `  scattering length

T = � lim
k!0

r
2

�k

Z �

��

d� f (�)

�
1 0

0 e i�

�
Cross section: � = k`2=2

Sharp impurity [cf. Novikov ’07]

U (r) =

(
V ; r < R

0; r > R

` = 2�R
J1(VR)

J0(VR)
' 2�R tan(VR � �=4)
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Single strong impurity: s-wave approximation
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Correction to conductance

�G =
32e2

�2h

�
16L2

`2
+

1

sin2(�x=L)

��1
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Single strong impurity: s-wave + p-wave

x

y

V

0 L

0

W

0 0 0

1 1

2 2
3 4

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

VR

∆
G

Include two channels in the T-matrix

T =

�
` 0

0 `1

�
with ` = 2�R

J1(VR)

J0(VR)
`1 = 2�R3 J2(VR)

J1(VR)
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General formalism

Generating function

F(�) = F0 +Tr log(1� �G0V ) with V =
P

n Vn(r)

Unfolding

F(�) = F0 +Tr log(1� Ĝ0V̂ ) = F0 +Tr log[1� (Ĝ0 � g)T̂ ]

Ĝ0 =) N �N matrix with all elements equal to �G0

V̂ = diagfV1;V2; : : : ;VN g T̂ = diagfT1;T2; : : : ;TN g

Small impurities (s-wave scattering)

Regularized Green function Ĝreg =

(
�Greg(rn); n = m ;

�G0(rn; rm); n 6= m

�F = log det(1� ĜregT̂ )  2N � 2N determinant!

Ostrovsky, Titov, Gornyi, Mirlin Anderson (de)localization in graphene with resonant scatterers



Introduction
Single strong impurity

Many resonant scatterers

General formalism
Resonant scalar impurities
Vacancies

Resonant scalar impurities

At resonance
T = `!1 ) �F = log detGreg

Conductance

G =
4e2

�h

�
W

L
+

2

�
TrM�1M�T

�
M =

�
A B

By �AT

�

Amn =
1

sin �
2L

�
xm + xn + i(ym � yn)

� A = Ay

Bmn =
1� �mn

sin �
2L

�
xm � xn + i(ym � yn)

� B = �BT

Symmetry class DIII
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Resonant scalar impurities: numerics

renormalization group

numerics

nL2

σ
[4

e2
/
π
h
]

400350300250200150100500

6

5

4

3

2

1

Weak antilocalization in class DIII

d ��

d logL
= 2� 2

��
+O(���2) G =

�W

L
� =

4e2

�h
��

� =
4e2

�h
(lognL2 � log lognL2)
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Vacancies

replacemen

0 L
x

0

W

y

H
CH3

2a

A B Θ

0
+2Π�3
-2Π�3

Strong on-site potential , vacancy

TA =
`

2

 
1 0 0 �e i�

0 0 0 0
0 0 0 0

�e�i� 0 0 1

!
TB =

`

2

� 0 0 0 0
0 1 e i� 0
0 e�i� 1 0
0 0 0 0

�

T matrix projects on sublattice (A or B) and on direction � in valleys

Resonance: `!1
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Conductance with vacancies

G =
4e2

�h

�
W

L
+ �Tr[K ;Y ](K +KT )�1[KT ;Y ](K +KT )�1

�

Kmn =
e

i�

4
(�m��n )+

i

2
(�m��n )

sin �
2L

�
�mxm + �nxn + i(ym � yn)

� K = K y

Y = L�1 diagfy1; y2; : : : ; yN g
�i = �1 and �i are sublattice and color of ith vacancy

Symmetry class BDI [Gade & Wegner ’91]

d ��

d logL
= 0 perturbatively in ALL loop orders!
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Vacancies: preliminary numerics (only one color)
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Unstable fixed point for nB = nA (probably conductivity saturates)

Stable fixed point for nB 6= nA with � � 4e2

�h
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Summary

1 Novel efficient approach to studying transport in strongly disordered

systems is developed

2 The theory is applied to graphene with resonant scatterers

3 Resonant scalar impurities lead to antilocalization

4 Vacancies establish various critical regimes

5 Results agree with the symmetry analysis based on the nonlinear

sigma model but extend beyond its applicability

PRL 104, 076802 (2010); arXiv:1006.3299
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