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Internal waves in a compressible two-layer atmospheric model:

The Hamiltonian description

Victor P. Ruban

Slow flows of an ideal compressible fluid (gas) in the gravity field in the presence of two isentropic
layers are considered, with a small difference of specific entropy between them. Assuming irrotational
flows in each layer and neglecting acoustic degrees of freedom, we derive Hamiltonian equations of
motion for the interface. The idealized system under consideration is the simplest theoretical model
for studying internal waves in a sharply stratified atmosphere, where decrease of mean equilibrium
gas density ρ̄(z) with altitude due to compressibility is essentially taken into account. For planar
flows, a generalization is made to the case when in each layer there is a constant potential vorticity.
Investigated in more details is the system with a model dependence ρ̄(z) ∝ exp(−2αz), for which
the Hamiltonian can be expressed explicitly. A long-wave regime is considered, and an approximate
weakly nonlinear equation of the form ut +auux−b[−∂̂2

x +α2]1/2ux = 0 (known as Smith’s equation)
is derived for evolution of a unidirectional wave.
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Approximate equations and their Hamiltonian structure

In each layer we have non-stationary Bernoulli equation and continuity equation,

∂tϕ +
(∇ϕ)2

2
= −w(ρ) − gz + const, (1)

∂tρ + ∇ · (ρ∇ϕ) = 0, (2)

where ϕ(r, t) is the potential for the velocity field v, ρ(r, t) is the gas density, w(ρ)
is the specific enthalpy which is defined by formula

w(ρ) = w1,2(ρ) =

∫ ρ

0

dp1,2(ρ)

ρ
. (3)

In the equilibrium state the velocity potential ϕ = 0, the enthalpy w1,2(ρ̄1,2(z)) =
const1,2 − gz, and the pressure is related to the density by the hydrostatic formula

p̄1,2(z) = p0 − g

∫ z

h

ρ̄1,2(z)dz. (4)



We consider slow flows when

p1,2 = p̄1,2(z) + p̃1,2,

w1,2 ≈ const1,2 − gz + p̃1,2/ρ̄(z),

where p̃1,2 are relatively small corrections to the pressure field due to the fluid flow.
Equations of slow motion in the main order in v/c take the form

∂tϕ1,2 +
(∇ϕ1,2)

2

2
+

p̃1,2

ρ̄(z)
= 0, (5)

∇ · (ρ̄(z)∇ϕ1,2) = 0. (6)

It is the neglect of time derivative ∂tρ in the continuity equation that allows us to
exclude from the consideration acoustic degrees of freedom and retain only “soft”
modes as the internal waves which are conditioned by the relatively small difference
of the two equilibrium density profiles. Compressibility of the medium in this model
is manifested in form that a volume of each fluid element at slow motion is effectively
“adapted” to the equilibrium density ρ̄(z), expanding when going up and compressing
when going down [since ρ̄′(z) < 0].



Let the shape of disturbed interface be given by equation z = η(x, t), where
x = (x, y) is the radius-vector in the horizontal plane, and let the boundary values
of the velocity potentials be

ψ1,2(x, t) = ϕ1,2(x, η(x, y, t), t).

At the free interface, the normal component Vn of the velocity field should be con-
tinuous, as well as the pressure. From these considerations, two kinematic conditions
and one dynamic condition are derived, which determine evolution of the system:

∂ϕ1

∂n
|z=η =

∂ϕ2

∂n
|z=η ≡ Vn, (7)

ηt = Vn

√

1 + (∇η)2, (8)

{ρ̄[ϕ1,t − ϕ2,t] +
ρ̄

2
[(∇ϕ1)

2 − (∇ϕ2)
2]}|z=η + g

∫ η

h

[ρ̄1(z) − ρ̄2(z)]dz = 0. (9)



It follows form Eq.(7) that ψ1 and ψ2 are related to each other by a linear integral
dependence. Therefore, if we fix the difference ψ(x, t) ≡ ψ1−ψ2, then each potential
will be fully determined. It is possible to prove that equations of motion for the two
main functions η(x, t) and ψ(x, t) possess the Hamiltonian structure

ρ̄(η)ηt = δH/δψ, −ρ̄(η)ψt = δH/δη, (10)

with the corresponding Lagrangian L =
∫

ρ̄(η)ηtψ d2x−H{η, ψ}. The Hamiltonian
functional H{η, ψ} is given by the following expression:

H =

∫

d2x

∫ η(x)

0

ρ̄(z)
(∇ϕ1)

2

2
dz +

∫

d2x

∫ +∞

η(x)

ρ̄(z)
(∇ϕ2)

2

2
dz + g

∫

W (η)d2x

=
1

2

∫

ρ̄(η)ψVnd
2x + g

∫

W (η)d2x, (11)

where

W ′(η) =

∫ η

h

[ρ̄1(z) − ρ̄2(z)]dz, (12)

that is H is the sum of the kinetic energy and an effective potential energy.



General form of the dispersion relation for linear waves

If particular solutions of Eq.(6) are known in the form of linear combinations

ϕk(x, z) = [AΦ
(−)
k (z) + BΦ

(+)
k (z)]eik·x, (13)

with decaying at z → +∞ functions Φ
(−)
k (z), and with growing at z → +∞

functions Φ
(+)
k (z), then dispersion relation for low-amplitude internal waves is

ω2
k = g̃(h)

D1(h, k)D2(h, k)

[D2(h, k) + D1(h, k)]
, (14)

where g̃(h) is a renormalized gravity acceleration: g̃(h) = g[ρ̄1(h) − ρ̄2(h)]/ρ̄(h),
and

D1(h, k) =
Φ
′(+)
k (h)Φ

′(−)
k (0) − Φ

′(−)
k (h)Φ

′(+)
k (0)

Φ
(+)
k (h)Φ

′(−)
k (0) − Φ

(−)
k (h)Φ

′(+)
k (0)

, (15)

D2(h, k) = −Φ
′(−)
k (h)

Φ
(−)
k (h)

. (16)



For example, in the case p ≈ C1ρ
γ we have ρ̄(z) ≈ C2(z0 − z)1/(γ−1). Functions

Φ
(±)
k (z) are expressed through the modified Bessel functions Iν and Kν, with the

index ν = [(γ − 1)−1 − 1]/2:

Φ
(−)
k (z) = [k(z0 − z)]−νIν(k(z0 − z)), (17)

Φ
(+)
k (z) = [k(z0 − z)]−νKν(k(z0 − z)). (18)



The Hamiltonian in terms of Green’s function

In some cases another way can be suitable how to calculate the Hamiltonian.
Since the kinetic energy takes the form K = 1

2

∫

(j · v)d2xdz, where j = ρ̄v is the
divergence-free field of the current density, we can introduce for j a vector potential
A which satisfies the equation

curl
1

ρ̄(z)
curlA = Ω ≡ curlv, (19)

with the boundary condition [∂xA
(y)(x, y, 0) − ∂yA

(x)(x, y, 0)] = 0. After that the
kinetic energy can be re-written as follows,

K =
1

2

∫

A · Ω d2xdz =
1

2

∫

Gik(r1, r2)Ωi(r1)Ωk(r2) d3r1d
3r2, (20)

where Gik(r1, r2) is the Green’s function for Eq.(19). As far as the (singular) vorticity
field Ω is totally concentrated at the interface z = η(x), and the vortex lines coincide
with levels of the function ψ(x) at that surface, the half-space integration will reduce
to integration along the surface z = η(x) by means of the change

(Ω(x), Ω(y), Ω(z))d3r → (ψy,−ψx, ψyηx − ψxηy)dxdy. (21)



As the simplest example, in this work an exponential profile

ρ̄(z) = ρ0 exp(−2αz)

of the equilibrium density is considered, when Eq.(19) after substitution A = ρ0e
−2αzF

turns into an equation with constant coefficients. Generally speaking, if taken glob-
ally, such a dependence contradicts to adiabatic equations of state for real gases.
Nevertheless, locally on the vertical coordinate near z = h, every realistic dependence
ρ̄(z) is approximated by an exponent, provided not very long waves are considered.

Accordingly, the kinetic energy of the 3D system, without taking into account the
flat rigid boundary, is given by the following expression in terms of η and ψ,

K =
ρ0

8π

∫

exp[−α
√

|x1−x2|2 + (η1−η2)2 − α(η1+η2)]
√

|x1 − x2|2 + (η1 − η2)2

×{∇ψ1 · ∇ψ2 + [∇ψ1 ×∇η1] · [∇ψ2 ×∇η2]}d2x1d
2x2, (22)

where ∇η and ∇ψ are 2D gradients. More cumbersome expression in the presence
of the boundary z = 0 is also known.



2D potential flows

The expression for the kinetic energy of the two-layer 2D flow looks as follows:

K2D =
ρ0

4π

∫

[K0

(

α
√

(x1 − x2)2 + (η1 − η2)2
)

−K0

(

α
√

(x1 − x2)2 + (η1 + η2)2
)

]e−α(η1+η2)ψ′
1ψ

′
2dx1dx2, (23)

where ψ′ = ∂ψ/∂x. We can also represent this functional in a slightly different form:

K2D =
ρ0

2

∫

dx1dx2ψ
′
1ψ

′
2e

−α(η1+η2)eik(x1−x2)

×
∫

[e−|η1−η2|
√

k2+α2 − e−(η1+η2)
√

k2+α2
]

2
√

k2 + α2

dk

2π
. (24)

From here we easily derive the dispersion relation,

ω2
k = g̃(h)k2 [1 − e−2h

√
k2+α2

]

2
√

k2 + α2
. (25)



Now we consider the limiting case αη ≪ 1 and typical wave numbers k satisfying
the conditions αη . kη ≪ 1. Expanding the exponents in integral (24) in powers of
the small arguments, we obtain an approximate kinetic energy functional up to the
first order in αη,

K∗{η, ψ} =
ρ0

2

∫

η(1 − 2αη)(ψ′)2dx − ρ0

2

∫

(ψ′η)[−∂̂2
x + α2]1/2(ψ′η) dx. (26)

Considering propagation of relatively small but finite disturbances η̃(x, t) = η(x, t)−
h, it is possible by a standard procedure to derive weakly nonlinear equation for
u(x, t) = ψx, which describes a slow evolution of uni-directional wave under the
influence of weak dispersion:

ut + c̄ux + āuux −
c̄h

2
{[−∂̂2

x + α2]1/2 − α}ux = 0, (27)

where the speed of long linear waves is c̄ ≈ [g̃(0)h]1/2, and the coefficient ā ≈
3/2. It is interesting to note that the special form of the dispersive term makes the
above equation intermediate between the two famous integrable models, namely the
Korteweg-de Vries equation and the Benjamin-Ono equation.



Planar flows with piecewise constant potential vorticity

Now we would like to make an important generalization of the Hamiltonian theory
which is possible for 2D isentropic flows [in (x, z) plane], namely we will take into
account the fact that potential vorticity γ̃ = −Ω(y)/ρ in the 2D case is governed by
the advection equation

γ̃t + v · ∇γ̃ = 0. (28)

Let (sufficiently small) constant potential vorticities in the layers be γ1,2. We shall
suppose that in the stationary state the velocity profile has a “break” at z = h, that
is U1,2(z) = −γ1,2µ(z), where

µ(z) =

∫ z

h

ρ̄(ξ)dξ. (29)

A 2D velocity field in each layer now takes the form

v1,2(x, z, t) = (U1,2(z) + ∂xϕ1,2(x, z, t), ∂zϕ1,2(x, z, t)), (30)

with the potentials ϕ1,2 satisfying the same equation (6): ∇ · ρ̄∇ϕ1,2 = 0, and it
implies the existence of the corresponding stream functions ϑ1,2(x, z, t):

ρ̄∂xϕ1,2 = ∂zϑ1,2, ρ̄∂zϕ1,2 = −∂xϑ1,2. (31)



The full stream functions of the flows under consideration are

Θ1,2(x, z, t) = ϑ1,2(x, z, t) − U 2
1,2(z)/(2γ1,2), (32)

Instead of the approximate Bernoulli equation, we have to deal with its generalization:

∂tϕ1,2 + γ1,2Θ1,2 +
(v1,2)

2

2
+

p̃1,2

ρ̄(z)
= 0. (33)

which regards the 2D Euler equation in the case of constant potential vorticity under
the condition ∇ · (ρ̄v) = 0.

At the interface z = η(x, t) there are the equalities

−∂xΘ1(x, η(x)) = −∂xΘ2(x, η(x)) = ρ̄(η)ηt = ρ̄(η)Vn

√

1 + η′2, (34)

where Vn = (v1 · n) = (v2 · n).



Demanding the pressure field to be continuous at z = η(x, t) and reasoning anal-
ogously to the case γ1,2 = 0, we conclude that the evolution equations for the 2D
system possess the following structure,

ρ̄(η)ηt = δH/δψ, (35)

−ρ̄(η)ψt + γρ̄(η)∂−1
x [ρ̄(η)ηt] = δH/δη, (36)

where γ = (γ1 − γ2), and the Hamiltonian H is equal to the sum of total kinetic
energy and the effective potential energy. The corresponding Lagrangian for the
above equations is

L =

∫

ψµt dx +
γ

2

∫

µ∂−1
x µt dx −H{µ, ψ}, (37)

where µ = µ(η) =
∫ η

h ρ̄(z)dz.
In particular, it is easy to show that the dispersion relation for linear waves with

γ 6= 0 is given by the following formula,

ωk = γρ̄(h)kN(h, k)/2 +

√

[γρ̄(h)kN(h, k)]2 /4 + g̃(h)k2N(h, k). (38)



Discussion

Promising directions of further research can be outlined as follows.
1) Generalization of the model is evident for more layers and for continuous limit.

Interaction between several interfaces in many cases is able to introduce new inter-
esting effects as instabilities etc.

2) We should mention a wide class of problems concerning interaction of internal
waves with mountains, which also can be studied with the help of this model.

3) Nonlinear wave dynamics can be simulated numerically.
4) An analogous Hamiltonian formulation is possible for consideration of axisym-

metric flows with a piecewise constant generalized potential vorticity.
5) It seems likely that analogous finite-layer models are possible not only in the

Eulerian hydrodynamics, but in a wider class of conservative hydrodynamic systems as
well, for instance, in the hydrodynamics of a relativistic fluid placed in a strong static
gravitational field described by a metric 4-tensor. Accordingly, there is a perspective
of application of a similar theory to astrophysical problems (where the equilibrium
density possesses the spherical symmetry, as a rule).
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