Topological matter insulators, topololgical superfluid ³He-B & relativistic quantum vacuum

G. Volovik

Landau Institute

Chernogolovka, June 21 2010

- **1.** Introduction
 - * topological matter and topological quantum phase transitions (TQPT)
- **2.** Fully gapped 2D topological media
 - * films of superfluid 3He-A and planar phase, 2D topological insulators
 - * topological invariants for gapped 2D topological matter
 - * edge states & fermion zero modes
- **3.** Fully gapped 3D topological media
 - * superfluid 3He-B, topological insulators, vacuum of Standard Model of particle physics
 - * topological invariants for gapped 3D topological matter
 - * edge states & Majorana fermions
- 4. Fermion zero modes on vortices

topological quantum phase transitions

transitions between ground states (vacua) of the same symmetry, but different topology in momentum space

example: QPT between gapless & gapped matter

 $T^{n} = \frac{e^{-\Delta/T}}{e^{-\Delta/T}}$ $T^{n} = \frac{e^{-\Delta/T}}{e^{-\Delta/T}}$

quantum phase transition at $q=q_{c}$

other topological QPT: Lifshitz transition, transtion between topological and nontopological superfluids, plateau transitions, confinement-deconfinement transition, ...

topological insulators & superconductors in 2+1

p-wave 2D superconductor, 3 He-A film, HgTe insulator quantum well

$$H = \begin{pmatrix} \frac{p^2}{2m} - \mu & c(p_x + ip_y) \\ c(p_x - ip_y) & -\frac{p^2}{2m} + \mu \end{pmatrix}$$
$$p^2 = p_x^{-2} + p_y^{-2}$$

How to extract useful information on energy states from Hamiltonian without solving equation

$$\mathbf{H}\boldsymbol{\psi} = E\boldsymbol{\psi}$$

Topological invariant in momentum space

$$H = \begin{pmatrix} \frac{p^2}{2m} - \mu & c(p_x + ip_y) \\ c(p_x - ip_y) & -\frac{p^2}{2m} + \mu \end{pmatrix} \qquad H = \begin{pmatrix} g_3(\mathbf{p}) & g_1(\mathbf{p}) + i g_2(\mathbf{p}) \\ g_1(\mathbf{p}) - i g_2(\mathbf{p}) & -g_3(\mathbf{p}) \end{pmatrix} = \tau \cdot \mathbf{g}(\mathbf{p})$$

$$p^2 = p_x^2 + p_y^2$$

fully gapped 2D state at
$$\mu \neq 0$$

$$\tilde{N}_3 = \frac{1}{4\pi} \int d^2 p \, \hat{\mathbf{g}} \cdot (\partial_{p_x} \hat{\mathbf{g}} \times \partial_{p_y} \hat{\mathbf{g}})$$

GV, JETP 67, 1804 (1988)

Skyrmion (coreless vortex) in momentum space at $\mu > 0$

quantum phase transition: from topological to non-topologicval insulator/superconductor

$$H = \begin{pmatrix} \frac{p^2}{2m} - \mu & c(p_x + ip_y) \\ c(p_x - ip_y) & -\frac{p^2}{2m} + \mu \end{pmatrix} = \begin{pmatrix} g_3(\mathbf{p}) & g_1(\mathbf{p}) + i g_2(\mathbf{p}) \\ g_1(\mathbf{p}) - i g_2(\mathbf{p}) & -g_3(\mathbf{p}) \end{pmatrix} = \mathbf{\tau} \cdot \mathbf{g}(\mathbf{p})$$

Fopological invariant in momentum space

$$\tilde{N}_3 = \frac{1}{4\pi} \int d^2 \mathbf{p} \ \hat{\mathbf{g}} \cdot (\partial_{p_x} \hat{\mathbf{g}} \times \partial_{p_y} \hat{\mathbf{g}})$$

$$\xrightarrow{\text{trivial insulator}}_{\tilde{N}_3 = 0} \begin{pmatrix} \tilde{N}_3 \\ \tilde{N}_3 = 1 \\ \text{topological invalue} \end{pmatrix}$$

$$\underbrace{\tilde{N}_3 = 0}_{\mu = 0}$$

 $\Delta \widetilde{N}_3 \neq 0$ is origin of fermion zero modes at the interface between states with different \widetilde{N}_3 *p*-space invariant in terms of Green's function & topological QPT

interface between two 2+1 topological insulators or gapped superfluids

* domain wall in 2D chiral superconductors:

$$H = \begin{pmatrix} \frac{p^2}{2m} - \mu & c(p_x + i p_y \tanh x) \\ c(p_x - i p_y \tanh x) & -\frac{p^2}{2m} + \mu \end{pmatrix}$$

Edge states at interface between two 2+1 topological insulators or gapped superfluids

$$\mathbf{v} = N_{+} - N_{-}$$

Edge states and currents

current
$$J_y = J_{\text{left}} + J_{\text{right}} = 0$$

Edge states and Quantum Hall effect

Intrinsic quantum Hall effect & momentum-space invariant

general Chern-Simons terms & momentum-space invariant

(interplay of *r*-space and *p*-space topologies)

$$S_{CS} = \frac{1}{16\pi} N_{IJ} e^{\mu\nu\lambda} \int d^2x \, dt \, A_{\mu}^{\ I} F_{\nu\lambda}^{\ J}$$

r-space invariant
p-space invariant protected by symmetry

$$M_{IJ} = \frac{1}{24\pi^2} e_{\mu\nu\lambda} tr \left[\int d^2p \, d\omega \, K_I \, K_J \, G \, \partial^{\mu} \, G^{-1} \, G \, \partial^{\nu} \, G^{-1} G \, \partial^{\lambda} \, G^{-1} \right]$$

$$K_I - charge interacting with gauge field $A_{\mu}^{\ I}$

$$K = e \quad \text{for electromagnetic field } A_{\mu}$$

$$K = \overset{\wedge}{\sigma_z} \quad \text{for effective spin-rotation field } A_{\mu}^{\ Z} \quad (A_0^{\ Z} = \gamma H^{\ Z})$$

$$i d/dt - \gamma \overset{\wedge}{\sigma} \cdot \mathbf{H} = i d/dt - \overset{\wedge}{\sigma} \cdot \mathbf{A}_0$$

applied Pauli magnetic field plays the role of components of effective SU(2) gauge field $A_{\mu}^{\ I}$$$

Intrinsic spin-current quantum Hall effect & momentum-space invariant

$$S_{\text{CS}} = \frac{1}{16\pi} N_{\text{IJ}} e^{\mu\nu\lambda} \int d^2x \, dt \, A_{\mu}^{\text{I}} F_{\nu\lambda}^{\text{J}}$$
spin current $J_x^{\text{z}} = \delta S_{\text{CS}} / \delta A_x^{\text{z}} = \frac{1}{4\pi} (\gamma N_{\text{ss}} \, dH^{\text{z}}/dy + N_{\text{se}} E_y)$
spin-spin QHE spin-charge QHE

2D singlet superconductor:

$$\sigma_{xy}^{\text{spin/spin}} = \frac{N_{\text{ss}}}{4\pi} \begin{cases} s \text{-wave:} & N_{\text{ss}} = 0\\ p_x + ip_y \text{:} & N_{\text{ss}} = 2\\ d_{xx-yy} + id_{xy} \text{:} & N_{\text{ss}} = 4 \end{cases}$$

film of planar phase of superfluid ³He

$$\sigma_{xy}^{\text{spin/charge}} = \frac{N_{\text{se}}}{4\pi}$$

GV & Yakovenko J. Phys. CM **1**, 5263 (1989)

Intrinsic spin-current quantum Hall effect & edge state

3D topological superfluids/insulators/semiconductors

gapless topologically nontrivial vacua

fully gapped topologically nontrivial vacua

3He-A, Standard Model above electroweak transition, semimetals

3He-B, Standard Model below electroweak transition, topological insulators (Be₂Se₃, ...), triplet & singlet color/chiral superconductors, ...

Present vacuum as semiconductor or insulator

electric charge of quantum vacuum Q= $\sum_{a} q_a = N [-1 + 3 \times (-1/3) + 3 \times (+2/3)] = 0$ **dielectric and magnetic properties of vacuum** (running coupling constants)

fully gapped 3+1 topological matter

superfluid ³He-B, topological insulator Bi_2Te_3 , present vacuum of Standard Model

* Standard Model vacuum as topological insulator

Topological invariant protected by symmetry

$$N_{\rm K} = \frac{1}{24\pi^2} e_{\mu\nu\lambda} \operatorname{tr} \int dV \, \mathrm{K} \, \mathbf{G} \, \partial^{\mu} \, \mathbf{G}^{-1} \, \mathbf{G} \, \partial^{\nu} \, \mathbf{G}^{-1} \mathbf{G} \, \partial^{\lambda} \, \mathbf{G}^{-1}$$
over 3D momentum space

G is Green's function at $\omega=0$, K is symmetry operator **G**K =+/- K**G**

Standard Model vacuum: $K=\gamma_5$ $G\gamma_5 = -\gamma_5 G$

$$N_{\rm K} = 8n_{\rm g}$$

8 massive Dirac particles in one generation

topological superfluid ³He-B

$$H = \begin{pmatrix} \frac{p^2}{2m^*} - \mu & c_B \sigma \cdot \mathbf{p} \\ c_B \sigma \cdot \mathbf{p} & -\frac{p^2}{2m^*} + \mu \end{pmatrix} = \begin{pmatrix} \frac{p^2}{2m^*} - \mu \end{pmatrix} \tau_3 + c_B \sigma \cdot \mathbf{p} \tau_1 \qquad K = \tau_2$$

$$I/m^*$$
non-topological superfluid
$$N_K = 0 \qquad N_K = +2 \qquad Dirac vacuum$$

$$N_K = -1 \qquad 0 \qquad N_K = +1 \qquad Dirac \qquad \mu \qquad 1/m^* = 0$$

$$I/m^* = 0 \qquad H = \begin{pmatrix} -M & c_B \sigma \cdot \mathbf{p} \\ c_B \sigma \cdot \mathbf{p} & +M \end{pmatrix}$$

GV JETP Lett. **90**, 587 (2009)

Boundary of 3D gapped topological superfluid

$$\mathbf{H} = \begin{pmatrix} \frac{p^2}{2m^*} - \mu + U(z) & c_B \boldsymbol{\sigma} \cdot \mathbf{p} \\ c_B \boldsymbol{\sigma} \cdot \mathbf{p} & -\frac{p^2}{2m^*} + \mu - U(z) \end{pmatrix}$$

spectrum of Majorana fermion zero modes

$$H_{zm} = c_B \stackrel{\wedge}{z} \cdot \sigma \mathbf{x} \mathbf{p} = c_B (\sigma_x p_y - \sigma_y p_x)$$

helical fermions

fermion zero modes on Dirac wall

one of 3 "speeds of light" changes sign across wall

spectrum of fermion zero modes

$$H_{zm} = c (\sigma_x p_y - \sigma_y p_x)$$

Bound states of fermions on cosmic strings and vortices

Spectrum of quarks in core of electroweak cosmic string

quantum numbers: Q - angular momentum & p_z - linear momentum

 $E(p_z) = -cp_z$ for d quarks

 $E(p_z) = cp_z$ for u quark

asymmetric branches cross zero energy

Index theorem:

Number of asymmetric branches = N N is vortex winding number Jackiw & Rossi Nucl. Phys. B**190**, 681 (1981)

Bound states of fermions on vortex in s-wave superconductor

Caroli, de Gennes & J. Matricon, Phys. Lett. 9 (1964) 307

Angular momentum Q is half-odd integer in s-wave superconductor

Index theorem for approximate fermion zero modes:

Number of asymmetric Q-branches = 2N N is vortex winding number no true fermion zero modes: no asymmetric branch as function of $p_{\rm Z}$

Index theorem for true fermion zero modes?

 $N_{\rm K} = 0$

is the existence of fermion zero modes related to topology in bulk?

GV JETP Lett. 57, 244 (1993)

fermions zero modes on symmetric vortex in 3He-B topological ³He-B at $\mu > 0$: $N_{\gamma} = 2$

Misirpashaev & GV Fermion zero modes in symmetric vortices in superfluid 3He, Physica B **210**, 338 (1995)

fermions zero modes on symmetric vortex in 3He-B

topological ³He-B at $\mu > 0$: $N_{\rm K} = 2$ $E\left(p_{Z}\,,\,Q\right)$ $E(Q, p_Z = 0)$ Q=4 Q=3 Q=2 Q=1 Q=0 $p_{\mathbf{Z}}$ Q 2 3 4 1 Q=-1 **Q**=-2 Q=-3 Q=-4 $E_Q = -Q\omega_0$ gapless fermions on Q=0 branch form $\omega_0 = \Delta^2 / E_F \ll \Delta$ 1D Fermi-liquid

Q is integer for p-wave superfluid ³He-B

Misirpashaev & GV Fermion zero modes in symmetric vortices in superfluid 3He, Physica B **210**, 338 (1995)

topological quantum phase transition in bulk & in vortex core

superfluid ³He-B as non-relativistic limit of relativistic triplet superconductor

$$\mathbf{H} = \begin{pmatrix} c\alpha \cdot \mathbf{p} + \beta M - \mu_{\mathrm{R}} & \gamma_{5}\Delta \\ & & \gamma_{5}\Delta & - c\alpha \cdot \mathbf{p} - \beta M + \mu_{\mathrm{R}} \end{pmatrix}$$

$$\begin{array}{c}
cp << M \\
\mu << M
\end{array}$$

$$H = \begin{pmatrix} \frac{p^2}{2m} - \mu & c_B \sigma \cdot \mathbf{p} \\ c_B \sigma \cdot \mathbf{p} & -\frac{p^2}{2m} + \mu \end{pmatrix}$$

relativistic triplet superconductor

$$c_{\rm B} = c \Delta /M \qquad m = M / c^2$$
$$(\mu + M)^2 = \mu_{\rm R}^2 + \Delta^2$$

phase diagram of topological states of relativistic triplet superconductor

energy spectrum in relativistic triplet superconductor

spectrum of non-relativistic ³He-B

fermion zero modes in relativistic triplet superconductor

possible index theorem for fermion zero modes on vortices

(interplay of *r*-space and *p*-space topologies)

$$N_{5} = \frac{1}{4\pi^{3}i} \operatorname{tr} \left[\int d^{3}p \ d\omega \ d\phi \ \mathbf{G} \ \partial_{\omega} \ \mathbf{G}^{-1} \ \mathbf{G} \ \partial_{\phi} \ \mathbf{G}^{-1} \ \mathbf{G} \ \partial_{p_{x}} \ \mathbf{G}^{-1} \ \mathbf{G} \ \partial_{p_{y}} \ \mathbf{G}^{-1} \ \mathbf{G} \ \partial_{p_{z}} \ \mathbf{G}^{-1} \ \mathbf{G} \ \mathbf{G}^{-1} \ \mathbf{G}^{-1} \ \mathbf{G} \ \mathbf{G}^{-1} \ \mathbf{G}^{-1} \ \mathbf{G} \ \mathbf{G}^{-1} \ \mathbf{$$

for vortices in Dirac vacuum

 $N_5 = N$ winding number

Conclusion

Momentum-space topology determines:

universality classes of quantum vacua

effective field theories in these quantum vacua topological quantum phase transitions (Lifshitz, plateau, etc.) quantization of Hall and spin-Hall conductivity topological Chern-Simons & Wess-Zumino terms quantum statistics of topological objects spectrum of edge states & fermion zero modes on walls & quantum vortices chiral anomaly & vortex dynamics, etc.

> problem: generalized index theorem (from combined p-r topology ?)

vortices in superfluid ³He-B

vortices in superfluid ³He-B

symmetry breaking in the 3He-B vortex core

Witten superconducting cosmic string & v-vortex

Bound states of fermions on v-vortex in 3He-B

M. A. Silaev, Spectrum of bound fermion states on vortices in 3He-B, JETP Lett. 2009

flat band

zero energy states in symmetric N=1 ³He-A vortex

Kopnin & Salomaa, PRB 44, 9667 (1991)

forces on vortices: three nondissipative forces + friction force acting on a vortex line

$$\mathbf{F}_{\text{Magnus}} + \mathbf{F}_{\text{Iordanskii}} + \mathbf{F}_{\text{Kopnin}} + \mathbf{F}_{\text{Stokes}} = \mathbf{0}$$

 $\mathbf{F}_{\text{Stokes}} = -\gamma \left(\mathbf{v}_{\text{L}} - \mathbf{v}_{\text{n}} \right)$

Momentogenesis by N=2 vortex-skyrmion

$$\mathbf{m} = (1/4\pi) \iint d\mathbf{x} d\mathbf{y} \ (\mathbf{l} \cdot (\partial \mathbf{l} / \partial \mathbf{x} \times \partial \mathbf{l} / \partial \mathbf{y})) = 1$$

vortex-skyrmion with N=2m=2 circulation quanta

Momentum transfer from vacuum to the heat bath (matter) gives extra topological force on skyrmion (spectral-flow force)

$$\mathbf{F} = \int d^3 \mathbf{r} \, \stackrel{\bullet}{\mathbf{P}} = (1/2\pi^2) \int d^3 \mathbf{r} \, (\mathbf{B} \cdot \mathbf{E}) \, p_F \, \mathbf{I} = (1/2\pi^2) \, \hbar \, p_F^3 \, \int d^3 \mathbf{r} \, (\nabla \times \mathbf{I} \cdot \mathbf{d} \, / \mathrm{d} \mathbf{t}) \, \mathbf{I}$$
$$= 2\pi \, \hbar \, (1/3\pi^2) \, p_F^3 \, \stackrel{\bullet}{\mathbf{z}} \, \times (\mathbf{v}_n - \mathbf{v}_L)$$

Chiral anomaly:

matter-antimatter asymmetry of Universe (baryon asymmetry) and Kopnin force

quasiparticles move from vacuum to the positive energy world, where they are scattered by quasiparticles in bulk and transfer momentum from vortex to normal component

this is the source of Kopnin spectral flow force

Experimental and theoretical forces on a vortex

laminar vortex flow

turbulent vortex flow

turbulent and laminar vortex evolution

68 s

128 s

160 s

 $T=0.4 T_{\rm C}$ Re_{α} > 1

0

Ь

44 s

TURBULENT VORTEX GENERATION

[Finne et al. Nature 424, 1022 (2003)]